

R2-D2 GOES TO BUGGY

Emily Yeh & Anastassia Kornilova

BUGGY

vehicle safety in the Real World

R2-D2 enters the races

Basics of the Model

Track: Helix with fixed width and varying parameters

Parameters:

Model 1. Varying helix radii

Model 2. Varying helix slope

Buggy Control (with R2D2): acceleration

Buggy Evolution: circular motion

PHYSICS: CIRCLES and Inclines

Figure from: http://physatwes.com/SecondLawHonors.aspx

Figure form: http://www.ux1.eiu.edu/~cfadd/1150/05UCMGrav/Curve.html

PHYSICS: CITCLES and Inclines

Figure from: http://physatwes.com/SecondLawHonors.aspx

Figure form: http://www.ux1.eiu.edu/~cfadd/1150/05UCMGrav/Curve.html

$$\mu * m * g * \cos(\theta) = m * v^2/r$$
$$v^2/fr = r$$

are we safe? are we efficient?

- Buggy's Radius: buggyR = v^2/fr
- Stay in track: trackR <= buggyR <= trackR+width
- Maintain reasonable velocity: vMin <= v <= vMax

APPROACH TO PROBLEM

```
initial conditions ->
( /* track generation decision */
  tRate = -inRate OR tRate = -outRate OR tRate=0
  /* acceleration */
  a := A if safe OR
  a := -B \text{ if safe } OR
  a := 0 if safe
/* ODEs - continuous evolution by physics */
)@loop invariant
/* ensure final safety conditions */
```

MODEL 1. THE HELIX

- Constant slope
- Radius can expand, shrink or remain the same
- Two challenges:
 - How to test for safety?
 - How to ensure safe condition exists?

SIMPLE case: THE CITCULAR TRACK

- Track Radius does not change
- Can coast safely (a=0)

FINDING a safe decision


```
inner = trackR_1+outRate*t
outer = trackR_1+width+outRate*t
```

R2D2 Goes to Buggy by Anastassia Kornilova & Emily Yeh

FINDING a safe decision: coasting?

inner = trackR_1+outRate*t outer = trackR_1+width+outRate*t

R2D2 Goes to Buggy by Anastassia Kornilova & Emily Yeh

FINDING a safe decision: accelerating?

buggyR = $(v+A*t)^2/fr$

FINDING a safe decision: defining constraints

- When the track is expanding:
 - Coast safely in the outer half
 - Accelerate safely in the inner one
- When the track is shrinking:
 - Coast safely in the inner half
 - Brake in the outer half
- When track is not changing:
 - Coast safely everywhere
- Define formulas to ensure these

constraint: coasting on expanding track

- Outer edge is moving away can't cause collision
- Inner Edge will approach middle the faster

$$trackR + width/2 >= trackR + inRate * t \ \forall 0 \le t \le T$$

$$width/2 >= inRate * T$$

Another challenge for constraints: safe at the end, but not the middle!

Another challenge for constraints: safe at the end, but not the middle!

constraint: accelerating on expanding track

Outer edge: $2*vMax*A*T/fr+A^2*T^2/fr \le width/2 + outRate*T$

Inner Edge: $outRate \le 2 * vMin * A/fr$

safety of Helix Model

- Define 6 constraints for guaranteed safe decisions
- Constraints use constants and remain true
- Inequalities use extreme values can be extended

MODEL 2. THE HELIX WITH HILLS

Track **slope** changes over time. Track **radius** stays the same.

Safety: Don't Crash!

Track chooses new slope change, **not** new slope.

case 1. FLat slope

• Slope = 0

• $F_g = G^*\cos(0) = G$

Risks:

No new risks introduced by slope

case 2. DOWNHILL

• $F_g > 0$

Risks:

Crashing into the outer edge (high v)

DOWNHILL SAFETY

Constraints added to ensure:

Inner half of track means... acceleration is <u>safe</u>.

Outer half of track means... deceleration is <u>safe</u>.

DOWNHILL SAFETY

Inner half of track means... acceleration is <u>safe</u>.

$$vMax >= (vMax + vMin)/2 + (A + G) * T + (T^2)/2$$

Outer half of track means...
deceleration is safe.

$$vMax > = vMax + (-B + G) * T + (T^2)/2$$

case 3. UPHILL

• $F_g < 0$

Risks:

Crashing into inner edge (low v)

UPHILL SAFETY

Constraints added to ensure:

Inner half of track means... acceleration is <u>safe</u>.

Outer half of track means... deceleration is <u>safe</u>.

UPHILL SAFETY

Constraints added to ensure:

Inner half of track means... acceleration is <u>safe</u>.

$$vMin <= vMin + (A - G) * T - (T^2)/2$$

Outer half of track means... deceleration is <u>safe</u>.

$$vMin \le (vMin + vMax)/2 + (-B - G) * T - (T^2)/2$$

MODEL CONTROLS

- Choices: A, -B, 0
- Makes choice based on tests that make sure we won't crash

Tests:

- Crash into inner edge?
- Crash into outer edge?

MODEL 2 SUMMARY

- Makes decisions based on upcoming slope changes
- Constraints use constants
- Constraints and tests ensure safety
- Model is limited by conservative constraints
- Model doesn't analyze F_{fr} change

FUTURE DIRECTIONS

- Better efficiency: find best path around track segment
- More Diverse Tracks
 - Combine changes in slope and radius
 - Allow for straight segments
- Looking ahead in tracks to find better paths
- Less synchronized controls

summary & significance

THank you.