
A Temporal Dynamic Logic for
Verifying Hybrid System Invariants?

André Platzer

University of Oldenburg, Department of Computing Science, Germany
Carnegie Mellon University, Computer Science Department, Pittsburgh, PA

platzer@informatik.uni-oldenburg.de

Abstract. We combine first-order dynamic logic for reasoning about
possible behaviour of hybrid systems with temporal logic for reasoning
about the temporal behaviour during their operation. Our logic sup-
ports verification of hybrid programs with first-order definable flows and
provides a uniform treatment of discrete and continuous evolution. For
our combined logic, we generalise the semantics of dynamic modalities
to refer to hybrid traces instead of final states. Further, we prove that
this gives a conservative extension of dynamic logic. On this basis, we
provide a modular verification calculus that reduces correctness of tem-
poral behaviour of hybrid systems to non-temporal reasoning. Using this
calculus, we analyse safety invariants in a train control system and sym-
bolically synthesise parametric safety constraints.

Keywords: dynamic logic, temporal logic, sequent calculus, logic for
hybrid systems, deductive verification of embedded systems

1 Introduction

Correctness of real-time and hybrid systems depends on a safe operation through-
out all states of all possible trajectories, and the behaviour at intermediate states
is highly relevant [1, 7, 9, 12,14,23].

Temporal logics (TL) use temporal operators to talk about intermediate
states [1, 10, 11, 24]. They have been used successfully in model checking [1, 6,
14, 15, 18] of finite-state system abstractions. Continuous state spaces of hybrid
systems, however, often do not admit equivalent finite-state abstractions [14,18].
Instead of model checking, TL can also be used deductively to prove validity of
formulas in calculi [8, 9]. Valid TL formulas, however, only express very generic
facts that are true for all systems, regardless of their actual behaviour. Hence,
the behaviour of a specific system first needs to be axiomatised declaratively
to obtain meaningful results. Then, however, the correspondence between actual
system operations and a declarative temporal representation may be questioned.

? This research was supported by a fellowship of the German Academic Exchange
Service (DAAD). It was also sponsored by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, see www.avacs.org).

S. Artemov and A. Nerode (Eds.): LFCS 2007, LNCS 4514, pp. 457–471, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



458 André Platzer

Dynamic logic (DL) [13] is a successful approach for deductively verifying
(infinite-state) systems [2, 3, 13, 16]. Like model checking, DL can analyse the
behaviour of actual system models, which are specified operationally. Yet, op-
erational models are internalised within DL-formulas, and DL is closed under
logical operators. Thus, DL can refer to multiple systems and analyse their rela-
tionship. This can be important for verifying larger systems compositionally or
for investigating refinement relations, see [22]. Further, Davoren and Nerode [9]
argue that, unlike model checking, deductive methods support formulas with free
parameters. However, DL only considers the behaviour at final states, which is
insufficient for verifying safety invariants that have to hold all the time.

We close this gap of expressivity by combining first-order dynamic logic [13]
with temporal logic [10,11,24]. Moreover, we generalise both operational system
models and semantics to hybrid systems [14]. In this paper, we introduce a
temporal dynamic logic dTL, which provides modalities for quantifying over
traces of hybrid systems. We equip it with temporal operators to state what is
true all along a trace or at some point during a trace. As in our non-temporal
dynamic logic dL [19, 20, 22], we use hybrid programs as an operational model
for hybrid systems. They admit a uniform treatment of interacting discrete and
continuous evolution in logic.

As a semantical foundation for combined temporal dynamic formulas, we
introduce a hybrid trace semantics for dTL. We prove that dTL is a conservative
extension of dL: for non-temporal specifications, trace semantics is equivalent to
the non-temporal final state semantics of [19,22].

As a means for verification, we introduce a sequent calculus for dTL that
successively reduces temporal statements about traces of hybrid programs to
non-temporal formulas. In this way, we make the intuition formally precise that
safety invariants can be checked by augmenting proofs with appropriate asser-
tions about intermediate states. Like in [22], our calculus supports compositional
reasoning. It structurally decomposes correctness statements about hybrid pro-
grams into corresponding statements about its parts by symbolic transformation.

Our approach combines the advantages of DL in reasoning about the be-
haviour of (multiple and parametric) operational system models with those of
TL to verify temporal statements about traces. On the downside, we show that
our logic is incomplete. Yet, reachability in hybrid systems is already unde-
cidable [14]. We argue that, despite this theoretical obstacle, dTL can verify
practical systems and demonstrate this by studying safety invariants in train
control [7, 12].

The first contribution of this paper is the logic dTL, which provides a coherent
foundation for reasoning about the temporal behaviour of operational models of
hybrid systems with symbolic parameters. The main contribution is our calculus
for deductively verifying temporal statements about hybrid systems.

Hybrid Systems. The behaviour of safety-critical systems typically depends on
both the state of a discrete controller and continuous physical quantities. Hybrid
systems are mathematical models for dynamic systems with interacting discrete



A Temporal Dynamic Logic for Verifying Hybrid System Invariants 459

and continuous behaviour [9,14]. Their behaviour combines continuous evolution
(called flow) characterised by differential equations and discrete jumps.

Dynamic Logic. The principle of dynamic logic is to combine system operations
and correctness statements about system states within a single specification
language (see [13] for a general introduction in the discrete case). By permitting
system operations α as actions of modalities, dynamic logic provides formulas
of the form [α]φ and 〈α〉φ, where [α]φ expresses that all terminating runs of
system α lead to final states in which condition φ holds. Likewise, 〈α〉φ expresses
that it is possible for α to execute and result in a final state satisfying φ. In
dTL, hybrid programs [19, 20, 22] play the role of α. In this paper, we modify
the semantics of [α] to refer to all traces of α rather than only all final states
reachable with α (similarly for 〈α〉). For instance, the formula [α]�φ expresses
that φ is true at each state during all traces of the hybrid system α. With this,
dTL can also be used to verify temporal statements about the behaviour of α
at intermediate states during system runs.

Related Work. Based on [25], Beckert and Schlager [4] added separate trace
modalities to dynamic logic and presented a relatively complete calculus. Their
approach only handles discrete state spaces. In contrast, dTL works for hybrid
programs with continuous state spaces. There, a particular challenge is that
invariants may change their truth-value during a single continuous evolution.

Mysore et al. [18] analysed model checking of TCTL [1] properties for semi-
algebraic hybrid systems and proved undecidability. Our logic internalises oper-
ational models and supports multiple parametric systems.

Zhou et al. [26] presented a duration calculus extended by mathematical
expressions with derivatives of state variables. Their calculus is unwieldy as it
uses a multitude of rules and requires external mathematical reasoning about
derivatives and continuity.

Davoren and Nerode [9] extended the propositional modal µ-calculus with a
semantics in hybrid systems and examine topological aspects. In [8], Davoren et
al. gave a semantics in general flow systems for a generalisation of CTL∗ [11].
In both cases, the authors of [9] and [8] provided Hilbert-style calculi to prove
formulas that are valid for all systems simultaneously using abstract actions.

The strength of our logic primarily is that it is a first-order dynamic logic: it
handles actual hybrid programs like x := x+ 1; ẋ = 2y rather than only abstract
actions of unknown effect. Our calculus directly supports verification of hybrid
programs with first-order definable flows; first-order approximations of more
general flows can be used according to [23]. First-order DL is more expressive
and calculi are deductively stronger than other approaches [4, 17].

Structure of this Paper. After introducing syntax and semantics of the temporal
dynamic logic dTL in Sect. 2, we introduce a sequent calculus for verifying
temporal dTL specifications of hybrid systems in Sect. 4 and prove soundness. In
Sect. 5, we prove safety invariants of the train control system presented in Sect. 3.



460 André Platzer

Alternating path and trace quantifiers for liveness verification are discussed in
Sect. 6. Finally, we draw conclusions and discuss future work in Sect. 7.

2 Temporal Dynamic Logic for Hybrid Systems

2.1 Overview: The Basic Concepts of dTL

The temporal dynamic logic dTL extends dynamic logic [13] with three concepts
for verifying temporal specifications of hybrid systems:

Hybrid programs. The behaviour of hybrid systems can be described by hybrid
programs [19,20,22], which generalise real-time programs [15] to hybrid change.
The distinguishing feature of hybrid programs in this context is that they provide
uniform discrete jumps and continuous evolutions along differential equations.
While hybrid automata [14] can be embedded, program structures are more
amenable to compositional symbolic processing by calculus rules [19].

Modal operators. Modalities of dynamic logic express statements about all pos-
sible behaviour ([α]π) of a system α, or about the existence of a trace (〈α〉π),
satisfying condition π. As in [19, 20, 22], the system α is described as a hybrid
program. Yet, unlike in standard dynamic logic [13], π is a trace formula in dTL,
and π is allowed to refer to all states that occur during a trace using temporal
operators.

Temporal operators. For dTL, the temporal trace formula �φ expresses that the
formula φ holds all along a trace selected by [α] or 〈α〉. For instance, the state
formula 〈α〉�φ says that the state formula φ holds at every state along at least
one trace of α. Dually, the trace formula ♦φ expresses that φ holds at some point
during such a trace. It can occur in a state formula 〈α〉♦φ to express that there
is such a state in some trace of α, or as [α]♦φ to say that, along each trace,
there is a state satisfying φ. In this paper, the primary focus of attention is on
homogeneous combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.

2.2 Syntax of dTL

State and Trace Formulas. The formulas of dTL are built over a non-empty
set V of real-valued variables and a fixed signature Σ of function and predicate
symbols. For simplicity, Σ is assumed to contain exclusively the usual function
and predicate symbols for real arithmetic, such as 0, 1,+, ·,=,≤, <,≥, >.

The set Trm(V ) of terms is defined as in classical first-order logic. The for-
mulas of dTL are defined similar to first-order dynamic logic [13]. However, the
modalities [α] and 〈α〉 accept trace formulas that refer to the temporal behaviour
of all states along a trace. Inspired by CTL and CTL∗ [10, 11], we distinguish
between state formulas, that are true or false in states, and trace formulas, that
are true or false for system traces. The sets Fml(V ) of state formulas, FmlT (V )
of trace formulas, and HP(V ) of hybrid programs with variables in V are simul-
taneously inductively defined in Definition 1 and 2, respectively.



A Temporal Dynamic Logic for Verifying Hybrid System Invariants 461

Definition 1 (Formulas). The set Fml(V ) of (state) formulas is simultane-
ously inductively defined as the smallest set such that:

1. If p ∈ Σ is a predicate, θ1, . . . , θn ∈ Trm(V ), then p(θ1, . . . , θn) ∈ Fml(V ).
2. If φ, ψ ∈ Fml(V ), then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) ∈ Fml(V ).
3. If φ ∈ Fml(V ) and x ∈ V , then ∀xφ,∃xφ ∈ Fml(V ).
4. If π ∈ FmlT (V ) and α ∈ HP(V ), then [α]π, 〈α〉π ∈ Fml(V ).

The set FmlT (V ) of trace formulas is the smallest set with:

1. If φ ∈ Fml(V ), then φ ∈ FmlT (V ).
2. If φ ∈ Fml(V ), then �φ,♦φ ∈ FmlT (V ).

Formulas without � and ♦, i.e., without case 2 of the trace formulas, are called
non-temporal dL formulas [19, 22]. Unlike in CTL, state formulas are true on a
trace (case 1) if they hold for the last state of a trace, not for the first. Thus, [α]φ
expresses that φ is true at the end of each trace of α. In contrast, [α]�φ expresses
that φ is true all along all states of every trace of α. This combination gives a
smooth embedding of non-temporal dL into dTL and makes it possible to define
a compositional calculus. Like CTL, dTL allows nesting with a branching time
semantics [10], e.g., [α]�(x ≥ 2 → 〈γ〉♦x ≤ 0).

Hybrid Programs. The hybrid programs [19, 20, 22] occurring in dynamic
modalities of dTL are built from elementary discrete jumps and continuous evo-
lutions using a regular control structure [13].

Definition 2 (Hybrid programs). The set HP(V ) of hybrid programs is
inductively defined as the smallest set such that:

1. If x ∈ V and θ ∈ Trm(V ), then (x := θ) ∈ HP(V ).
2. If x ∈ V and θ ∈ Trm(V ), then (ẋ = θ) ∈ HP(V ).
3. If χ ∈ Fml(V ) is quantifier-free and first-order, then (?χ) ∈ HP(V ).
4. If α, γ ∈ HP(V ) then (α ∪ γ) ∈ HP(V ).
5. If α, γ ∈ HP(V ) then (α; γ) ∈ HP(V ).
6. If α ∈ HP(V ) then (α∗) ∈ HP(V ).

The effect of x := θ is an instantaneous discrete jump in state space or a mode
switch. That of ẋ = θ is an ongoing continuous evolution regulated by the
differential equation with time-derivative ẋ of x and term θ (accordingly for
systems of differential equations).

Test actions ?χ are used to define conditions. Their semantics is that of
a no-op if χ is true in the current state, and that of a dead end operator
aborting any further evolution, otherwise. The sequential composition α; γ, non-
deterministic choice α∪γ, and non-deterministic repetition α∗ of system actions
are as usual [13]. They can be combined with ?χ to form other control struc-
tures [13].

In dTL, there is no need to distinguish between discrete and continuous vari-
ables or between system parameters and state variables, as they share the same



462 André Platzer

uniform semantics. For pragmatic reasons, an informal distinction can neverthe-
less improve readability. For instance, ∃x [ẋ = −x]x ≤ 5 expresses that there is a
choice of the initial value for x (which could be a parameter) such that after all
evolutions along ẋ = −x, the outcome of the state variable x will be at most 5.

2.3 Trace Semantics of dTL

In standard dynamic logic [13] and dL [19,22], modalities only refer to the final
states of system runs and the semantics is a reachability relation on states:
State ω is reachable from state ν using α if there is a run of α which terminates
in ω when started in ν. For dTL, however, formulas can refer to intermediate
states of runs as well. Thus, the semantics of a hybrid system α is the set of its
possible traces, i.e., successions of states that occur during the evolution of α.

States contain values of system variables during a hybrid evolution. A state
is a map ν : V → R; the set of all states is denoted by Sta(V ). In addition, we
distinguish a state Λ to denote the failure of a system run when it is aborted due
to a test ?χ that yields false. In particular, Λ can only occur at the end of an
aborted system run and marks that there is no further extension.

Hybrid systems evolve along piecewise continuous traces in multi-dimensional
space as time passes. Continuous phases are governed by differential equations,
whereas discontinuities are caused by discrete jumps in state space. Unlike in
discrete cases [4,25], traces are not just sequences of states, since hybrid systems
pass through uncountably many states even in bounded time. Beyond that, con-
tinuous changes are more involved than in pure real-time [1, 15], because all
variables can evolve along different differential equations. Generalising the real-
time traces of [15], the following definition captures hybrid behaviour by splitting
the uncountable succession of states into periods σi that are regulated by the
same control law. For discrete jumps, some periods are point flows of duration 0.

Definition 3 (Hybrid Trace). A trace is a (non-empty) finite or infinite se-
quence σ = (σ0, σ1, σ2, . . . ) of functions σi : [0, ri] → Sta(V ) with respective du-
rations ri ∈ R (for i ∈ N). A position of σ is a pair (i, ζ) with i ∈ N and ζ in
the interval [0, ri]; the state of σ at (i, ζ) is σi(ζ). Positions of σ are ordered
lexicographically by (i, ζ) ≺ (j, ξ) iff either i < j, or i = j and ζ < ξ. Further,
for a state ν ∈ Sta(V ), ν̂ : 0 7→ ν is the point flow at ν with duration 0. A trace
terminates if it is a finite sequence (σ0, σ1, . . . , σn) and σn(rn) 6= Λ. In that case,
the last state lastσ is denoted as σn(rn). The first state firstσ is σ0(0).

Unlike in [1,15], the definition of traces also admits finite traces of bounded du-
ration, which is necessary for compositionality of traces in α; γ. The semantics
of hybrid programs α as the set τ(α) of its possible traces depends on valua-
tions val(ν, ·) of formulas and terms at intermediate states ν. The valuation of
terms [13], and interpretations of function and predicate symbols are as usual
for real arithmetic. The valuation of formulas will be defined in Definition 5. We
use ν[x 7→ d] to denote the modification that agrees with state ν on all variables
except for the symbol x, which is changed to d ∈ R.



A Temporal Dynamic Logic for Verifying Hybrid System Invariants 463

Definition 4 (Trace semantics of hybrid programs). The trace semantics,
τ(α), of a hybrid program α, is the set of all its possible hybrid traces and is
defined as follows:

1. τ(x := θ) = {(ν̂, ω̂) : ω = ν[x 7→ val(ν, θ)] for ν ∈ Sta(V )}
2. τ(ẋ = θ) = {(f) : 0 ≤ r ∈ R and f : [0, r] → Sta(V ) is such that the func-

tion val(f(ζ), x) is continuous in ζ on [0, r] and has a derivative of value
val(f(ζ), θ) at each ζ ∈ (0, r). Variables without a differential equation do
not change}

3. τ(?χ) = {(ν̂) : val(ν, χ) = true} ∪ {(ν̂, Λ̂) : val(ν, χ) = false}
4. τ(α ∪ γ) = τ(α) ∪ τ(γ)
5. τ(α; γ) = {σ ◦ ς : σ ∈ τ(α) , ς ∈ τ(γ) when σ ◦ ς is defined}; the composition

of σ = (σ0, σ1, σ2, . . . ) and ς = (ς0, ς1, ς2, . . . ) is

σ ◦ ς =


(σ0, . . . , σn, ς0, ς1, . . . ) if σ terminates at σn and lastσ = first ς
σ if σ does not terminate
not defined otherwise

6. τ(α∗) =
⋃
n∈N τ(α

n), where αn+1 = (αn;α) for n ≥ 1, and α0 = (?true).

Time passes differently during discrete and continuous change. During contin-
uous evolution, the discrete step index i of positions (i, ζ) remains constant,
whereas the continuous duration ζ remains 0 during discrete point flows. This
permits multiple discrete state changes to happen at the same (super-dense)
continuous time, unlike in [1].

Definition 5 (Valuation of formulas). The valuation of state and trace for-
mulas is defined respectively. For state formulas, the valuation val(ν, ·) with
respect to state ν is defined as follows:

1. val(ν, p(θ1, . . . , θn)) = p`
(
val(ν, θ1), . . . , val(ν, θn)

)
, where p` is the relation

associated to p.
2. val(ν, φ ∧ ψ) is defined as usual, the same holds for ¬,∨,→.
3. val(ν,∀xφ) = true :⇐⇒ val(ν[x 7→ d], φ) = true for all d ∈ R
4. val(ν,∃xφ) = true :⇐⇒ val(ν[x 7→ d], φ) = true for some d ∈ R
5. val(ν, [α]π) = true :⇐⇒ for each trace σ ∈ τ(α) that starts in firstσ = ν, if

val(σ, π) is defined, then val(σ, π) = true.
6. val(ν, 〈α〉π) = true :⇐⇒ there is a trace σ ∈ τ(α) starting in firstσ = ν,

such that val(σ, π) = true.

For trace formulas, the valuation val(σ, ·) with respect to trace σ is:

1. If φ is a state formula, then val(σ, φ) = val(lastσ, φ) if σ terminates,
whereas val(σ, φ) is not defined if σ does not terminate.

2. val(σ,�φ) = true :⇐⇒ val(σi(ζ), φ) = true for all positions (i, ζ) of σ
with σi(ζ) 6= Λ.

3. val(σ,♦φ) = true :⇐⇒ val(σi(ζ), φ) = true for some position (i, ζ) of σ
with σi(ζ) 6= Λ.

As usual, a (state) formula is valid if it is true in all states.



464 André Platzer

2.4 Conservative Temporal Extension

The following result shows that the extension of dTL by temporal operators does
not change the meaning of non-temporal dL formulas. The trace semantics given
in Definition 5 is equivalent to the final state reachability relation semantics [19,
22] for the sublogic dL of dTL. A proof for this can be found in [21].

Proposition 1. The logic dTL is a conservative extension of non-temporal dL,
i.e., the set of valid dL-formulas is the same with respect to transition reach-
ability semantics of dL [19, 22] as with respect to the trace semantics of dTL
(Definition 5).

3 Safety Invariants in Train Control

In the European Train Control System (ETCS) [12], trains are coordinated by
decentralised Radio Block Centres (RBC), which grant or deny movement au-
thorities (MA) to the individual trains by wireless communication. In emergen-
cies, trains always have to stop within the MA issued by the RBC, see Fig. 1.
Following the reasoning pattern for traffic agents in [7], each train negotiates
with the RBC to extend its MA when approaching the end, say m, of its cur-
rent MA. Since wireless communication takes time, this negotiation is initiated
in due time before reaching m. During negotiation, trains are assumed to keep
their desired speed as in [7]. Before entering negotiation at some point ST, the
train still has sufficient distance to MA (it is in far mode) and can regulate its
speed freely within the track limits.

Depending on weather conditions, slope of track etc., the local train motion
control determines a safety envelope s around the train, within which it con-
siders driving safe, and adjusts its acceleration a in accordance with s (called
correction [7]). In particular, depending on the maximum RBC response time,
this determines the latest point, SB, on the track where a response from the
RBC must have arrived to guarantee safe driving.

RBC

MAST SBnegot corrfar

Fig. 1. ETCS train coordination by movement authorities

As a model for train movements, we use the ideal-world model adapted
from [7]. It does not model friction, slopes, or mass of train but is perfectly
suitable for analysing the cooperation level of train control [7]. The local safety



A Temporal Dynamic Logic for Verifying Hybrid System Invariants 465

properties that where used when verifying the cooperation protocol can then be
shown for more detailed models of individual components.

For a safe operation of multiple traffic agents, it is crucial that the MA is
respected at every point in time during this protocol, not only at its end. Hence,
we need to consider temporal safety invariants. For instance, when the train has
entered the negotiation phase at its current position z, dTL can analyse the
following safety invariant of a part of the train controller:

ψ → [negot; corr; ż = v, v̇ = a]�(` ≤ L→ z < m) (1)

where negot ≡ ż = v, ˙̀ = 1
corr ≡ (?m− z < s; a :=−b) ∪ (?m− z ≥ s; a := . . . ) .

It expresses that—under a sanity condition ψ for parameters—a train will always
remain within its MA m, as long as the accumulated RBC negotiation latency `
is at most L. We refer to [12] for details on what contributes to `. Like in [7], we
model the train to first negotiate while keeping a constant speed (ż = v) in negot.
Thereafter, in corr , the train corrects its acceleration or brakes with force b (as
a failsafe recovery manoeuvre) on the basis of the remaining distance (m − z).
Finally, the train continues moving according to the system (ż = v, v̇ = a) or,
equivalently, z̈ = a. Instead of manually choosing specific values for the free
parameters of (1) as in [7,12], we will use the techniques developed in this paper
to automatically synthesise constraints on the relationship of parameters that
are required for a safe operation of cooperative train control.

4 A Verification Calculus for Safety Invariants

In this section, we introduce a sequent calculus for verifying temporal specifica-
tions of hybrid systems in dTL. With the basic idea being to perform a sym-
bolic decomposition, hybrid programs are successively transformed into simpler
logical formulas describing their effects. There, statements about the temporal
behaviour of a hybrid program are successively reduced to corresponding non-
temporal statements about the intermediate states.

For propositional logic, standard rules P1–P9 are listed in Fig. 2. The rule P10
is a shortcut to handle quantifiers of first-order real arithmetic, which is decid-
able. We use P10 as a modular interface to arithmetic and refer to [19] for a
goal-oriented integration of arithmetic, which combines with dTL. Rules D1–D8
work similar to those in [3,13]. For handling discrete change, D8 inductively uses
substitutions. D9–D10 handle continuous evolutions given a first-order definable
flow yx. In particular, in conjunction with P10, they fully encapsulate handling
of differential equations within hybrid systems.

Rules T1–T10 successively transform temporal specifications of hybrid pro-
grams into non-temporal dL formulas. The idea underlying this transformation
is to decompose hybrid programs and recursively augment intermediate state
transitions with appropriate specifications. D1–D2 are identical for dTL and dL
specifications, hence they apply for all trace formulas π and not just for state
formulas. Rules for handling [α]♦φ and 〈α〉�φ are discussed in Sect. 6.



466 André Platzer

4.1 Rules of the Calculus

A sequent is of the form Γ ` ∆, where Γ and ∆ are finite sets of formulas. Its
semantics is that of the formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ and will be treated as an

abbreviation. In the following, an update U is a list of discrete assignments of
the form x := θ (see [3] for advanced update techniques, which can be combined
with our calculus).

Definition 6 (Provability, derivability). A formula ψ is provable from a
set Φ of formulas, denoted by Φ `dTL ψ iff there is a finite set Φ0 ⊆ Φ for which
the sequent Φ0 ` ψ is derivable. In turn, a sequent of the form Γ, 〈U〉Φ ` 〈U〉Ψ,∆
(for some update U , including the empty update, and finite sets Γ,∆ of context
formulas) is derivable iff there is an instance

Φ1 ` Ψ1 . . . Φn ` Ψn
Φ ` Ψ

of a rule schema of the dTL calculus in Fig. 2 such that

Γ, 〈U〉Φi ` 〈U〉Ψi,∆

is derivable for each 1 ≤ i ≤ n. Moreover, the symmetric schemata Di and Ti
can be applied on either side of the sequent (in context Γ,∆ and update 〈U〉).
The schematic modality 〈[·]〉 can be instantiated with both [·] and 〈·〉 in all rule
schemata. The same modality instance has to be chosen within a single schema
instantiation, though.

As usual in sequent calculus—although the direction of entailment is from pre-
misses (above rule bar) to conclusion (below)—the order of reasoning is goal-
directed : Rules are applied starting from the desired conclusion at the bottom
(goal) to the premisses (sub-goals).

Rule T1 decomposes invariants of α; γ into an invariant of α and an invariant
of γ that holds when γ is started in any final state of α. T3 expresses that invari-
ants of assignments need to hold before and after the discrete change (similarly
for T2, except that tests do not lead to a state change). T4 can directly reduce
invariants of continuous evolutions to non-temporal formulas as restrictions of
solutions of differential equations are themselves solutions of different duration.
T5 relies on T1 and is simpler than D7, because the other rules will inductively
produce a premiss that φ holds in the current state. The dual rules T6–T10
work similarly. The usual induction schemes [13, 17] can be added to the dTL
calculus. Inductive invariant properties can be handled by augmenting induction
rules with an additional branch that takes care of the temporal properties.

4.2 Soundness and Incompleteness

The following result shows that verification with the dTL calculus always pro-
duces correct results about safety of hybrid systems, i.e., the dTL calculus is
sound.



A Temporal Dynamic Logic for Verifying Hybrid System Invariants 467

(P1)
` φ
¬φ `

(P2)
φ `
` ¬φ

(P3)
φ ` ψ
` φ→ ψ

(P4)
φ, ψ `
φ ∧ ψ `

(P5)
` φ ` ψ
` φ ∧ ψ

(P6)
` φ ψ `
φ→ ψ `

(P7)
φ ` ψ `
φ ∨ ψ `

(P8)
` φ, ψ
` φ ∨ ψ

(P9)
φ ` φ

(P10)
F0 ` G0

F ` G

(D1)
〈α〉π ∨ 〈γ〉π
〈α ∪ γ〉π

(D2)
[α]π ∧ [γ]π

[α ∪ γ]π

(D3)
〈[α]〉〈[γ]〉φ
〈[α; γ]〉φ

(D4)
χ ∧ φ
〈?χ〉φ

(D5)
χ→ φ

[?χ]φ

(D6)
φ ∨ 〈α;α∗〉φ

〈α∗〉φ

(D7)
φ ∧ [α;α∗]φ

[α∗]φ

(D8)
F θ

x

〈[x := θ]〉F

(D9)
∃t≥0 〈x := yx(t)〉φ

〈ẋ = θ〉φ

(D10)
∀t≥0 [x := yx(t)]φ

[ẋ = θ]φ

(T1)
[α]�φ ∧ [α][γ]�φ

[α; γ]�φ

(T2)
φ

[?χ]�φ

(T3)
φ ∧ [x := θ]φ

[x := θ]�φ

(T4)
[ẋ = θ]φ

[ẋ = θ]�φ

(T5)
[α;α∗]�φ

[α∗]�φ

(T6)
〈α〉♦φ ∨ 〈α〉〈γ〉♦φ

〈α; γ〉♦φ

(T7)
φ

〈?χ〉♦φ

(T8)
φ ∨ 〈x := θ〉φ
〈x := θ〉♦φ

(T9)
〈ẋ = θ〉φ
〈ẋ = θ〉♦φ

(T10)
〈α;α∗〉♦φ
〈α∗〉♦φ

In these rules, φ and ψ are (state) formulas, whereas π is a trace formula. Unlike φ
and ψ, the trace formula π may thus begin with � or ♦. In D8, F is a first-order
formula and the substitution of F θ

x , which replaces x by θ in F , does not introduce
new bindings. In D9–D10, t is a fresh variable and yv the solution of the initial value
problem (ẋ = θ, x(0) = v). In P10, Cl∀ (F0 → G0) → Cl∀ (F → G) is an instance of a
first-order tautology of real arithmetic and Cl∀ the universal closure.

Fig. 2. Rule schemata of the temporal dynamic dTL verification calculus.



468 André Platzer

Theorem 1 (Soundness). The dTL calculus is sound, i.e., derivable (state)
formulas are valid. (See [21] for a proof.)

Theorem 2 (Incompleteness). Fragments of dTL are inherently incomplete,
i.e. cannot have a complete calculus. (See [21] for a proof.)

5 Verification of Train Control Safety Invariants

Continuing the ETCS study from Sect. 3, we consider a slightly simplified version
of equation (1) that gives a more concise proof. By a safe abstraction (provable
in dTL), we simplify corr to permit braking even when m− z ≥ s, since braking
remains safe with respect to z < m. We use the following abbreviations in
addition to (1):

ψ ≡ z < m ∧ v > 0 ∧ ` = 0 ∧ L ≥ 0
φ ≡ ` ≤ L→ z < m

corr ≡ a :=−b ∪ (?m− z ≥ s; a := . . . ) .

Within the following proof, 〈[]〉 brackets are used instead of modalities to visually
identify the update prefix (Definition 6). To give shorter formulas, we generalise
update application D8 to work within quantifiers according to [3]. The dTL proof
of the safety invariant in (1) splits into two cases as follows:

. . .
ψ ` [negot]�φ

. . .
ψ ` [negot][corr; ż = v, v̇ = a]�φ

T1 ψ ` [negot; corr; ż = v, v̇ = a]�φ
P3 ` ψ → [negot; corr; ż = v, v̇ = a]�φ

There, the left branch proves that φ holds while negotiating and is as follows:

ψ ` Lv + z < m
P10ψ ` ∀l≥0 (l ≤ L→ lv + z < m)
D8 ψ ` ∀l≥0 〈[z := lv + z, ` := l]〉φ
D10ψ ` [negot]φ
T4 ψ ` [negot]�φ

The right branch shows that φ continues to hold after negotiation has completed
when continuing with an adjusted acceleration a:

ψ, `≥0 ` v2 < 2b(m− Lv − z) ∧ Lv + z < m
P10 ψ, `≥0 ` 〈[z := `v+z, a := -b]〉∀t≥0 (`≤L→ a

2 t
2+vt+z<m)

D8 ψ, `≥0 ` 〈[z := `v+z, a := -b]〉∀t≥0 〈[z := a
2 t

2+vt+z]〉φ)
T4,D10ψ, `≥0 ` 〈[z := `v+z, a := -b]〉[ż = v, v̇ = a]�φ .

D2 ψ, `≥0 ` 〈[z := `v+z]〉[corr][ż = v, v̇ = a]�φ .
T1 ψ, `≥0 ` 〈[z := `v+z]〉[corr; ż = v, v̇ = a]�φ
P3 ψ ` `≥0 → 〈[z := `v+z]〉[corr; ż = v, v̇ = a]�φ
P10 ψ ` ∀`≥0 〈[z := `v+z]〉[corr; ż = v, v̇ = a]�φ
D10 ψ ` [negot][corr; ż = v, v̇ = a]�φ



A Temporal Dynamic Logic for Verifying Hybrid System Invariants 469

The application of T1 in this latter case spawns a third case (marked with .)
to show that φ holds during corr . However, the reasoning in this third case is
subsumed by the cases above, since the changes on a in corr do not interfere
with condition φ. Generally, this optimisation of T1 is applicable whenever the
modified vocabulary is disjoint from φ. Here, D10 and P10 are implemented in
Mathematica to handle evolutions [19].

The leaves of the proof branches above can even be used to automatically
synthesise parameter constraints that are necessary to avoid MA violation. The
parametric safety constraint obtained by combining the open conditions conjunc-
tively is Lv + z < m ∧ v2 < 2b(m− Lv − z). It simplifies to v2 < 2b(m− Lv − z)
as b > 0. This yields bounds for the speed limit and negotiation latency in or-
der to guarantee safe driving and closing of the proof. Similarly, D2 leads to a
branch for the case [?m− z ≥ s; a := . . .], from which corresponding conditions
about the safety envelope s can be derived depending on the particular speed
controller. Yet, this is beyond the scope of this paper.

6 Liveness by Quantifier Alternation

Liveness specifications of the form [α]♦φ or 〈α〉�φ are sophisticated (Σ1
1 -hard

because they can express infinite occurrence in Turing machines). Beckert and
Schlager [4] say they failed to find sound rules for a discrete case that corresponds
to [α; γ]♦φ.

For finitary liveness semantics, we accomplish this as follows. In this section,
we modify the meaning of [α]♦φ to refer to all terminating traces of α. Then,
the straightforward generalisation T11 in Fig. 3 is sound, even in the hybrid
case(see [21] for proofs). But T11 still leads to an incomplete axiomatisation
as it does not cover the case where, in some traces, φ becomes true at some
point during α, and in other traces, φ only becomes true during γ. To overcome
this limitation, we use a program transformation approach. We instrument the
hybrid program to monitor the occurrence of φ during all changes: In T12, α̌
results from replacing all occurrences of x := θ by x := θ; ?φ→ t = 1 and ẋ = θ
by ẋ = θ&(φ→ t = 1). The latter denotes continuous evolution restricted to the
region of the state space that satisfies φ→ t = 1 (see [19] for details). The effect
is that t detects whether φ has occurred during any change in α. In particular, t
is guaranteed to be 1 after all runs, if φ occurs at least once along all traces of α.
This trick directly works for quantifier-free first-order conditions φ. Using the
combination presented in [22], nominals can be used as state labels to address
the same issue for general φ.

(T11)
` [α]♦φ, [α][γ]♦φ

` [α; γ]♦φ
(T12)

φ ∨ ∀t [α̌]t = 1

[α]♦φ

Fig. 3. Transformation rules for alternating temporal path and trace quantifiers.



470 André Platzer

7 Conclusions and Future Work

For reasoning about hybrid systems, we have introduced a temporal dynamic
logic, dTL, with modal path quantifiers over traces and temporal quantifiers
along the traces. It combines the capabilities of dynamic logic [13] to reason
about possible system behaviour with the power of temporal logic [10,11,24] in
reasoning about the behaviour along traces. Furthermore, we have presented a
calculus for verifying temporal safety specifications of hybrid programs in dTL.

Our sequent calculus for dTL is a modular combination of temporal and non-
temporal reasoning. Temporal formulas are handled using rules that augment
intermediate state transitions with corresponding sub-specifications. Purely non-
temporal rules handle the effects of discrete and continuous evolution.

As an example, we demonstrate that our logic is suitable for reasoning about
safety invariants in the European Train Control System [12]. Further, we have
successfully applied our calculus to automatically synthesise (non-linear) para-
metric safety constraints for this system.

We are currently extending our preliminary verification tool for parametric
hybrid systems to cover the full dTL calculus. Future work includes extending
dTL with CTL∗-like [11] formulas of the form [α](ψ ∧�φ) to avoid splitting of
the proof into two very similar sub-proofs for temporal parts [α]�φ and non-
temporal parts [α]ψ arising in T1. Our combination of temporal logic with dy-
namic logic is more suitable for this purpose than the approach in [4], since dTL
has uniform modalities and uniform semantics for temporal and non-temporal
specifications. This extension will also simplify the treatment of alternating live-
ness quantifiers conceptually.

References

1. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time systems.
In LICS, pages 414–425. IEEE Computer Society, 1990.

2. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2007.

3. B. Beckert and A. Platzer. Dynamic logic with non-rigid functions: A basis for
object-oriented program verification. In U. Furbach and N. Shankar, editors, IJ-
CAR, volume 4130 of LNCS, pages 266–280. Springer, 2006.

4. B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with
trace modalities. In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume
2083 of LNCS, pages 626–641. Springer, 2001.

5. A. Bemporad, A. Bicchi, and G. Buttazzo, editors. Hybrid Systems: Computation
and Control, 10th International Conference, HSCC 2007, Pisa, Italy, Proceedings,
volume 4416 of LNCS. Springer, 2007.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-
bridge, MA, USA, 1999.

7. W. Damm, H. Hungar, and E.-R. Olderog. On the verification of cooperating
traffic agents. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever,
editors, FMCO, volume 3188 of LNCS, pages 77–110. Springer, 2003.



A Temporal Dynamic Logic for Verifying Hybrid System Invariants 471

8. J. M. Davoren, V. Coulthard, N. Markey, and T. Moor. Non-deterministic temporal
logics for general flow systems. In R. Alur and G. J. Pappas, editors, HSCC, volume
2993 of LNCS, pages 280–295. Springer, 2004.

9. J. M. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE,
88(7):985–1010, July 2000.

10. E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

11. E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.

12. J. Faber and R. Meyer. Model checking data-dependent real-time properties of
the European Train Control System. In FMCAD, pages 76–77. IEEE Computer
Society Press, Nov 2006.

13. D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. MIT Press, 2000.
14. T. A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292, 1996.
15. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. In LICS, pages 394–406. IEEE Computer Society, 1992.
16. D. Hutter, B. Langenstein, C. Sengler, J. H. Siekmann, W. Stephan, and

A. Wolpers. Deduction in the verification support environment (VSE). In M.-
C. Gaudel and J. Woodcock, editors, FME, volume 1051 of LNCS, pages 268–286.
Springer, 1996.

17. D. Leivant. Partial correctness assertions provable in dynamic logics. In
I. Walukiewicz, editor, FoSSaCS, volume 2987 of LNCS, pages 304–317. Springer,
2004.

18. V. Mysore, C. Piazza, and B. Mishra. Algorithmic algebraic model checking II:
Decidability of semi-algebraic model checking and its applications to systems bi-
ology. In D. Peled and Y.-K. Tsay, editors, ATVA, volume 3707 of LNCS, pages
217–233. Springer, 2005.

19. A. Platzer. Differential dynamic logic for verifying parametric hybrid systems.
2007.

20. A. Platzer. Differential logic for reasoning about hybrid systems. In Bemporad
et al. [5], pages 746–749.

21. A. Platzer. A temporal dynamic logic for verifying hybrid system invariants. Re-
ports of SFB/TR 14 AVACS 12, February 2007. ISSN: 1860-9821, available at
http://www.avacs.org.

22. A. Platzer. Towards a hybrid dynamic logic for hybrid dynamic systems. In
P. Blackburn, T. Bolander, T. Braüner, V. de Paiva, and J. Villadsen, editors,
Proc., LICS International Workshop on Hybrid Logic, 2006, Seattle, USA, ENTCS,
2007.

23. A. Platzer and E. M. Clarke. The image computation problem in hybrid systems
model checking. In Bemporad et al. [5], pages 473–486.

24. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.
25. V. R. Pratt. Process logic. In POPL, pages 93–100, 1979.
26. C. Zhou, A. P. Ravn, and M. R. Hansen. An extended duration calculus for hybrid

real-time systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
editors, Hybrid Systems, volume 736 of LNCS, pages 36–59. Springer, 1992.


