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We study the logic of dynamical systems, that is, logics and proof principles for properties of dynamical
systems. Dynamical systems are mathematical models describing how the state of a system evolves over

time. They are important for modeling and understanding many applications, including embedded systems

and cyber-physical systems. In discrete dynamical systems, the state evolves in discrete steps, one step at
a time, as described by a difference equation or discrete state transition relation. In continuous dynamical

systems, the state evolves continuously along a function, typically described by a differential equation.

Hybrid dynamical systems or hybrid systems combine both discrete and continuous dynamics. Distributed
hybrid systems combine distributed systems with hybrid systems, i.e., they are multi-agent hybrid systems

that interact through remote communication or physical interaction. Stochastic hybrid systems combine

stochastic dynamics with hybrid systems.
We survey dynamic logics for specifying and verifying properties for each of those classes of dynamical

systems. A dynamic logic is a first-order modal logic with a pair of parametrized modal operators for each
dynamical system to express necessary or possible properties of their transition behavior. Due to their full

basis of first-order modal logic operators, dynamic logics can express a rich variety of system properties,

including safety, controllability, reactivity, liveness, and quantified parametrized properties, even about
relations between multiple dynamical systems. In this survey, we focus on some of the representatives of

the family of differential dynamic logics, which share the ability to express properties of dynamical systems

having continuous dynamics described by various forms of differential equations.
We explain the dynamical system models, dynamic logics of dynamical systems, their semantics, their

axiomatizations, and proof calculi for proving logical formulas about these dynamical systems. We study

differential invariants, i.e., induction principles for differential equations. We survey theoretical results,
including soundness and completeness and deductive power. Differential dynamic logics have been imple-

mented in automatic and interactive theorem provers and have been used successfully to verify safety-critical

applications in automotive, aviation, railway, robotics, and analogue electrical circuits.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-
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1. INTRODUCTION
Dynamical systems study the mathematics of change [Hirsch et al. 2003; Perko 2006].
Dynamical systems are mathematical models for describing how the state of a system
evolves over time in a state space. They can describe, for example, the temporal evo-
lution of the state of an embedded system or of a cyber-physical system, i.e., a system
combining and integrating cyber (computation and/or communication) with physical
effects. Cars [Deshpande et al. 1996], aircraft [Tomlin et al. 1998], robots [Plaku et al.
2009], and power plants [Fourlas et al. 2004] are prototypical examples. But dynam-
ical systems are more general and can also describe and analyze chemical processes
[Riley et al. 2010; Kerkez et al. 2010], biological systems [Tiwari 2011], medical mod-
els [Grosu et al. 2011; Kim et al. 2011], and many other behavioral phenomena. Since
dynamical systems occur in so many different contexts, different variations of dynam-
ical system models are relevant for applications, including discrete dynamical systems
described by difference equations or discrete transitions relations [Galor 2010], con-
tinuous dynamical systems described by differential equations [Hirsch et al. 2003;
Perko 2006], hybrid dynamical systems alias hybrid systems combining discrete and
continuous dynamics [Maler et al. 1991; Alur et al. 1995; Branicky 1995; Henzinger
1996; Branicky et al. 1998; Davoren and Nerode 2000; Alur et al. 2000; Platzer 2008a;
Platzer 2010a; Platzer 2008b; Platzer 2010b; Platzer 2012b], distributed hybrid sys-
tems or multi-agent hybrid systems [Deshpande et al. 1996; Rounds 2004; Kratz et al.
2006; Gilbert et al. 2009; Platzer 2010c; Platzer 2012a], and stochastic hybrid systems
that take stochastic effects into account [Davis 1984; Ghosh et al. 1997; Hu et al. 2000;
Bujorianu and Lygeros 2006; Cassandras and Lygeros 2006; Meseguer and Sharykin
2006; Koutsoukos and Riley 2008; Fränzle et al. 2010; Platzer 2011b].

For many of the applications that can be understood as dynamical systems, we are
interested in analyzing and predicting their behavior, e.g., because the applications
are safety-critical or performance-critical. For car control systems, for example, it is
important to verify that the controllers choose only safe control choices that can never
lead to collisions with other traffic participants at any later point in time [Deshpande
et al. 1996; Loos et al. 2011].

This illustrates a central point about the analysis of dynamical systems. Whether a
current control choice is safe or unsafe in a dynamical system depends on whether the
states that the dynamical system could reach after this control choice in the future will
be safe or unsafe. Whether a dynamical system is safe or unsafe depends on whether
it will always choose safe control choices at all times. Whether we can find that out
depends on whether we can find a proof that the dynamical system is safe or whether
we can find a proof that it is unsafe.

What we can accept as a proof or other form of evidence depends on how critical it is
that the answer is right. If the answer is that the dynamical system is unsafe, then a
test scenario demonstrating one bad behavior is good evidence, because it can be used
for debugging purposes. If the dynamical system is suspected unsafe, then an expert’s
engineering judgment can be good evidence, because that would already prevent pre-
mature manufacturing and/or deployment of a potentially unsafe system design. If the
answer is that the dynamical system is safe, we prefer stronger evidence than a series
of successful test scenarios. After all, most dynamical systems have large or even (un-
countably) infinite state spaces, so that no finite set of tests alone could demonstrate
that the system will be safe in the infinitely many other possible situations that could
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not be tested. This issue is particularly daunting for the complex systems found in
practical applications, e.g., because they follow complex control logic or many of their
features interact or because their physical interactions are difficult etc.

For those reasons, we pursue the question of what constitutes a proof about a dynam-
ical system and how we can systematically obtain proofs to show whether the system
is safe or unsafe. Safety, in this introductory discussion, should be broadly construed,
because the approaches we study in this article work for much more complicated prop-
erties than classical safety properties as well, including liveness, controllability, reac-
tivity, quantified parametrized properties and so on.

Our technical vehicle for answering these questions from a logically foundational
perspective is our study of logics of dynamical systems. We survey logics for studying
properties of the behavior of dynamical systems and proof approaches for proving those
properties deductively. Dynamic logic [Pratt 1976] has been developed and used very
successfully for conventional discrete programs, both for theoretical [Harel et al. 1977;
Segerberg 1977; Parikh 1978; Fischer and Ladner 1979; Harel 1979; Kozen and Parikh
1981; Meyer and Parikh 1981; Peleg 1987; Istrail 1989; Harel et al. 2000; Leivant 2006]
and practical purposes [Reif et al. 1997; Harel et al. 2000; Beckert et al. 2007]. We
consider extensions of dynamic logic to dynamical systems, including logic for hybrid
systems [Platzer 2007b; Platzer 2008a; Platzer 2010a; Platzer 2008b; Platzer 2010b;
Platzer 2012b], logic for distributed hybrid systems [Platzer 2010c; Platzer 2012a],
and logic for stochastic hybrid systems [Platzer 2011b]. We emphasize that the logic of
dynamical systems approach we survey in this article lends itself to many interesting
theoretical investigations as witnessed by a number of highly nontrivial theoretical
results [Platzer 2007b; Platzer 2008a; Platzer 2010a; Platzer 2008b; Platzer 2010b;
Platzer 2010c; Platzer 2011b; Platzer 2012d; Platzer 2012b; Platzer 2012a], while, at
the same time, enabling the practical verification of complex applications across differ-
ent fields [Platzer 2008b; Platzer and Clarke 2009b; Platzer and Quesel 2009; Platzer
2010b; Loos et al. 2011; Loos and Platzer 2011; Renshaw et al. 2011; Mitsch et al. 2012;
Aréchiga et al. 2012] and inspiring algorithmic approaches based directly on these log-
ics [Platzer and Clarke 2008; Platzer 2008b; Platzer and Clarke 2009a; Platzer and
Quesel 2008; Platzer et al. 2009; Platzer 2010b; Renshaw et al. 2011].

We remind the reader that this is not an isolated phenomenon. Logics have been
used very successfully in many different ways, including deduction and model check-
ing, for verifying several other classes of systems, including finite-state systems
[Clarke et al. 1999; Baier et al. 2008], programs [Pratt 1976; Harel et al. 2000; Beckert
et al. 2007; Bradley and Manna 2007; Apt et al. 2010], and real-time systems [Dutertre
1995; Zhou and Hansen 2004; Olderog and Dierks 2008; Baier et al. 2008]. Hybrid
systems verification, for example, has generally received significant attention by the
research community, including a number of verification tools [Henzinger et al. 1997;
Mitchell and Templeton 2005; Ratschan and She 2007; Frehse 2008; Platzer and Que-
sel 2008; Renshaw et al. 2011; Frehse et al. 2011]; see Sect. 6 for an overview. Each
verification approach has benefits and tradeoffs. It is promising to combine ideas from
approaches rooted in different traditions to leverage the specific advantages of each.
For instance, fixpoint loops, which are a driving force behind model checking [Clarke
et al. 1999; Baier et al. 2008], have been used as a proof strategy to find deductive
proofs in the proof calculus of differential dynamic logic [Platzer 2008a]. Both can
be used to compute invariants and differential invariants of the system [Platzer and
Clarke 2008; Platzer and Clarke 2009a]. The study of the logic of dynamical systems
combines many areas of science, including mathematical logic, automated theorem
proving, proof theory, model checking, and decision procedures, as well as differential
algebra, computer algebra, algebraic geometry, analysis, stochastic calculus, and nu-
merical approximation.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: YYYY.



A:4 A. Platzer

We see a number of advantages of the approach we focus on here, which make it at-
tractive for research and applications, with the most important being soundness, com-
pleteness, compositionality, and extendability. Because dynamical systems can capture
very complex behavior, their analysis can become very challenging and it is surpris-
ingly difficult to get the reasoning sound [Collins 2007; Platzer and Clarke 2007]. In
logic, soundness is easier to achieve, because we just check a small number of elemen-
tary proof rules for soundness once and for all. Then everything that can be derived
from those simple rules, no matter how complicated, is going to be correct. Soundness
(everything we prove is true) and completeness (we can prove everything that is true)
are separated by design. In logic, completeness is a meaningful question to ask, not just
in practice but also in theory, and has been answered in detail for logic of dynamical
systems (Sect. 3.5 and [Platzer 2012b]). More generally, theoretical questions and log-
ically foundational questions, including relative completeness [Platzer 2008a; Platzer
2012b; Platzer 2012a] and relative deductive power [Platzer 2010a; Platzer 2012d],
become meaningful in a logical setting.

The logics and proof systems we consider are compositional. That is, the logics have
a perfectly compositional, denotational semantics, in which the semantics of a model
and the meaning of a formula are simple functions of the respective semantics of their
parts. Furthermore, the proof systems are compositional, i.e., they exploit this com-
positional semantics and systematically reduce a property of a complex systems to a
number of properties about simpler systems by structural decomposition. This makes
it possible to understand complex dynamical systems in terms of their parts, which
are often much easier than the full system. In fact, completeness results prove that
decomposition is always successful. This result translates into practice, where sys-
tems that are designed according to good engineering practice adhering to modularity
principles are easier to verify than those that are not. Smart decompositions can have
a tremendous impact on the practical verification complexity and improve scalability
[Loos et al. 2011].

Another beneficial phenomenon in logics of dynamical systems is that they are easy
to extend. Verification is based on a proof calculus, which is a collection of simple proof
rules (and axioms). In order to verify a feature in a different way, we can simply add
new proof rules, which will improve the verification since the previous proof rules are
kept as alternatives. We will exercise this a number of times in this article, particularly
when we are adding more and more proof rules to handle various sophisticated aspects
of differential equations. We start with simple rules using solutions of differential
equations, then study differential invariants [Platzer 2010a], an induction principle
for differential equations, then differential cuts [Platzer 2010a; Platzer 2012d], a logi-
cal cut principle for differential equations, and finally differential auxiliaries [Platzer
2012d]. Differential refinement and differential transformation rules are further ex-
tensions [Platzer 2010a; Platzer 2010b], but beyond the scope of this article. Temporal
logic extensions [Platzer 2010b; Platzer 2007c] and extensions to differential-algebraic
hybrid systems [Platzer 2010a; Platzer 2010b] are other illustrations of how the logic
and proof calculus can be extended easily just by adding rules to cover more advanced
temporal properties and systems with more complex dynamics.

In this article we focus on the logic of hybrid systems and we illustrate two more in-
vasive extensions that change the logic of dynamical systems in fundamental ways by
changing the characteristic of relevant dynamical aspects. In Sect. 4, we consider the
logic of distributed hybrid systems [Platzer 2010c; Platzer 2012a], which changes the
state space in fundamental ways from fixed finite-dimensional state spaces to evolv-
ing and infinite-dimensional state spaces of arbitrarily many hybrid system agents
interacting with each other through remote communication and physical interaction.
This extension is as radical as that from propositional logic to first-order logic, except
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that it happens in the dynamics, not just the propositions. In Sect. 5, we consider the
logic of stochastic hybrid systems [Platzer 2011b], which changes the dynamics in fun-
damental ways to incorporate discrete and continuous stochastic effects changing the
semantics from deterministic boolean truth to the randomness of stochastic processes.
While both extensions are radical, catapulting us into fundamentally different classes
of dynamical systems, we will see that the changes in the proof calculi are surprisingly
moderate additions of proof rules for new dynamical features and refinements, e.g., to
adapt to a stochastic semantics.

Another helpful aspect of logic is that it produces proofs that can serve as read-
able evidence for the correctness of a system for certification purposes. Concerns that
are sometimes voiced in the context of classical discrete systems about theorem prov-
ing compared to model checking involve the degree of automation and the ability to
find counterexamples. They are less relevant for general dynamical systems. Even the
verification of very simple classes of hybrid systems is neither semidecidable nor co-
semidecidable [Asarin and Maler 1998; Henzinger 1996; Cassez and Larsen 2000].
Consequently, quite unlike in finite-state systems and timed automata [Clarke et al.
1999; Baier et al. 2008], exhaustive exploration of all states, even in bisimulation quo-
tients, does not terminate in general, so that approximations and abstractions have
to be used during the reachability analysis, and counterexamples are no longer reli-
able (see [Clarke et al. 2003a] for counterexample-guided abstraction refinement tech-
niques). Some nontrivial applications [Platzer and Clarke 2008; Platzer and Clarke
2009a; Platzer and Clarke 2009b; Platzer and Quesel 2009; Platzer 2010b] have been
proved fully automatically with the approach we survey here. Improving automation
and scalability is, nevertheless, a permanently promising challenge in verification. For
complex systems, we find it advantageous that proving is amenable to human guid-
ance, because the designer can specify the critical invariants of his system design,
which helps finding proofs when current automation techniques fail.

In this article, we take a view that we call multi-dynamical systems, i.e., the princi-
ple to understand complex systems as a combination of multiple elementary dynamical
aspects. This approach helps us tame the complexity of complex systems by under-
standing that their complexity just comes from combining lots of simple dynamical
aspects with one another. The overall system itself is still as complicated as the whole
application. But since differential dynamic logics and proofs are compositional, we can
leverage the fact that the individual parts of a system are simpler than the whole, and
we can prove correctness properties about the whole system by reduction to simpler
proofs about their parts. This approach demonstrates that the whole can be greater
than the sum of all parts. The whole system is complicated, but we can still tame its
complexity by an analysis of its parts, which are simpler. Completeness results are the
theoretical justification why this multi-dynamical systems principle works.

The results reported in this paper are based on previous research on logics of dy-
namical systems [Platzer 2007b; Platzer 2008a; Platzer 2010a; Platzer 2008b; Platzer
2010b; Platzer 2010c; Platzer 2011a; Platzer 2011b; Platzer 2012b; Platzer 2012d;
Platzer 2012a]. The results presented here are new in that we show significantly sim-
plified Hilbert-type axiomatizations and, consequently, simplified semantics in com-
parison to the earlier presentations, which were more tuned for automation. This set-
ting enables us to identify connections between the approaches for the different classes
of dynamical systems. We provide an overview of the approach of logic of dynamical
systems here, but it is, by no means, possible to handle all material comprehensively in
this survey. A more comprehensive source on logic of hybrid systems is a book [Platzer
2010b] and subsequent extensions [Platzer 2012d; Platzer 2012b]. Details about the
logic of distributed hybrid systems [Platzer 2010c; Platzer 2011a; Platzer 2012a] and
about logic of stochastic hybrid systems [Platzer 2011b] can be found in previous work.
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More information about algorithmic aspects can be found in related papers [Platzer
2007a; Platzer and Clarke 2008; Platzer and Clarke 2009a; Platzer and Quesel 2008]
and applications [Platzer and Clarke 2009b; Platzer and Quesel 2009; Loos et al. 2011;
Loos and Platzer 2011; Renshaw et al. 2011; Mitsch et al. 2012]. Complementary exten-
sions to differential temporal dynamic logic [Platzer 2010b; Platzer 2007c] and exten-
sions to differential-algebraic hybrid systems with complex dynamics [Platzer 2010a;
Platzer 2010b] are very useful, but beyond the scope of this article.

In Sect. 2, we briefly summarize the dynamical aspects of various classes of dynam-
ical systems before we study their models, logics, and proofs in more detail in sub-
sequent sections. In Sect. 3, we study the logic of hybrid systems, which includes the
logic of discrete dynamical systems and the logic of continuous dynamical systems
as fragments. In Sect. 4, we study the logic of distributed hybrid systems, extending
the results from Sect. 3 to multi-agent scenarios. We study the logic of stochastic hy-
brid systems in Sect. 5. We discuss related work in Sect. 6 and give pointers to the
literature. Section 7 concludes with a summary and an outlook for future research
opportunities.

2. DYNAMICAL SYSTEMS
In this section, we briefly recall the basic principles behind a number of classes of
dynamical systems, for which we study models, logics, and proof approaches in subse-
quent sections. We also illustrate our multi-dynamical systems view on these dynami-
cal systems, which we detail in subsequent sections.

Formally, a dynamical system is an action of a monoid T (time) on a state space X .
That is a dynamical system is described by a function ϕ, whose value ϕt(x) ∈ X at time
t ∈ T denotes the state that the system has at time t, provided that it started in the
initial state x ∈ X at time 0. It starts at ϕ0(x) = x and the evolution can proceed in
stages, i.e., ϕt+s(x) = ϕs(ϕt(x)) for all s, t ∈ T and x ∈ X . That is, if the dynamical sys-
tem evolves for time t and, from the state ϕt(x) that it reached then, for time s, then it
reaches the same state by simply evolving for time t+s starting from x right away. For
different choices of T and X , we get different classes of dynamical systems. For com-
putational analysis purposes, it is also crucial to choose a sufficiently computational
description of the dynamical system ϕ.

2.1. Discrete Dynamical Systems
Discrete dynamical systems have an integer notion of time (e.g., T = N or T = Z)
so that the state evolves in discrete steps, one step at a time, as typically described
by a difference equation or discrete state transition function. The discrete dynamical
system

ϕn+1(x) = f(ϕn(x)) (n ∈ N) (1)

is fully described by its generator f : X → X or transition function, where x ∈ X is
the initial state. Equivalently, when defining h(x) := f(x)− x the discrete dynamical
system (1) can be described by the difference equation

ϕn+1(x)− ϕn(x) = h(ϕn(x)) (n ∈ N)

Computation processes can be described by discrete dynamical systems, for example.
The system starts in an initial state ϕ0(x) = x at a time 0, performs a transition to a
new state ϕ1(x) = f(x) at a time 1, then another transition to a state ϕ2(x) = f(f(x))
at time 2, etc. until the computation terminates at a state ϕn(x) at some time n. The
scaling unit of these integer time steps is not relevant, but could be chosen, e.g., as the
cycle time of a processor or discrete controller. Program models and automata mod-
els have been used to describe discrete dynamical systems and have been used very
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successfully in verification [Clarke et al. 1999; Baier et al. 2008; Apt et al. 2010]. The
behavior of systems with a discrete state transition relation R ⊆ X × X is nondeter-
ministic, but can still be captured as a discrete dynamical system using the powerset
2X as the state space instead of X :

ϕn+1(X) = {f(x) : x ∈ ϕn(X)} (n ∈ N)

when starting from a set X ⊆ X of initial states.
Discrete dynamical systems cannot, however, describe continuous processes, except

as approximations at discrete points in time, e.g., with a uniform discretization grid 1
n

at the discrete points in time 0
n ,

1
n ,

2
n , . . . ,

n
n . Discrete-time approximations give limited

information about the behavior in between the i
n , which causes fundamental differ-

ences [Platzer and Clarke 2007] and similarities [Platzer 2012b].

2.2. Continuous Dynamical Systems
Continuous dynamical systems have a real continuous notion of time (e.g. T = R≥0 or
T = R) so that the state evolves continuously along a function of real time, typically
described by a differential equation. The state of the system ϕt(x) then is a function of
continuous time t. The continuous dynamical system

dϕt(x)

dt
= f(ϕt(x)) (t ∈ R)

ϕ0(x) = x

is fully described by its generator f : X → X , where x ∈ X is the initial state. De-
pending on the duration of the solution of the above differential equation, the contin-
uous system may only be defined on a subinterval of R. The time-derivative d

dt is only
well-defined under additional assumptions, e.g., that X is a Euclidean space Rn or a
differentiable manifold [Hirsch et al. 2003; Perko 2006].

Many physical processes are continuous dynamical systems described by differen-
tial equations. The movement of the longitudinal position of a car of velocity v down a
straight road from initial position p0, for example, can be described by the differential
equation p′(t) = v with initial value p(0) = p0. The state of the dynamical system at
time t then is the solution ϕt(p0) = p0 + tv, which is defined at all times t ∈ R. We refer
to the literature for more details and many more examples of continuous dynamical
systems [Hirsch et al. 2003; Perko 2006]. Continuous dynamical systems cannot rep-
resent discrete transitions easily; see, however, Sect. 3.5. Discrete transitions lead to
discontinuities, which lead to interesting but very complicated generalized notions of
solutions, including Carathéodory solutions [Walter 1998] or Filippov solutions [Aubin
and Cellina 1984].

2.3. Hybrid Systems
Hybrid dynamical systems alias hybrid systems [Alur et al. 1995; Branicky 1995; Hen-
zinger 1996; Branicky et al. 1998; Davoren and Nerode 2000; Alur et al. 2000; Platzer
2008a; Platzer 2010a; Platzer 2008b; Platzer 2010b; Platzer 2012b] are dynamical sys-
tems that combine discrete dynamical systems and continuous dynamical systems.
Discrete and continuous dynamical systems are not just combined side by side to form
hybrid systems, but they can interact in interesting ways. Part of the system can be de-
scribed by discrete dynamics (e.g., decisions of a discrete-time controller), other parts
are described by continuous dynamics (e.g., movement of a physical process), and both
kinds of dynamics interact freely in a hybrid system (e.g., when the discrete controller
changes control variables of the continuous side by appropriate actuators, e.g., when
changing acceleration, or when the continuous dynamics determines the values of sen-
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sor readings for the discrete decisions, e.g., the velocity). Embedded systems and cyber-
physical systems are often modeled as hybrid systems, because they involve both dis-
crete control and physical effects.
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Fig. 1. Local car crash

A typical example is a car that drives on a road accord-
ing to a differential equation for the physical movement, but
is subject to discrete control decisions where discrete con-
trollers change the acceleration and braking of the wheels,
e.g., when the adaptive cruise control or the electronic stabil-
ity program takes effect. Figure 1 shows how the acceleration
of a car changes instantaneously by discrete control decisions
(top), and how the velocity and position evolve continuously
over time (middle and bottom). The situation in Figure 1 il-
lustrates a bad control choice, where the follower car brakes
too late (at time t2) and then crashes into the leader car at
time t3. In particular, the follower car made a bad decision
to keep on accelerating at some point before time t2, when
it should have activated the brakes instead, because, at time
t2, no control choice (within the physical acceleration limits
−b to A) could prevent the crash. This is one illustration of
the phenomenon that bad control choices in the past cause
unsafety in the future and that we need to verify our control
choices now by considering their possible dynamical effects
in the future.

Notice that the state space X has no bearing on whether
a system is a hybrid system or not. It is the notion of time
and dynamics that determines hybrid systems. For example,
a system that has both discrete-valued state variables from
a discrete set {1, 2, 3, 4} and continuous-valued state vari-
ables from a continuous set like R is still a discrete dynam-
ical system if all its variables only change in discrete steps
(Sect. 2.1).

In hybrid systems, we follow our multi-dynamical systems philosophy and model
each part of the system by the most appropriate dynamics, whether discrete or contin-
uous, instead of having to model everything discrete, uniformly, for the whole system
as in discrete dynamical systems or to model everything continuous, uniformly, as in
continuous dynamical systems. The overall system behavior can still be very compli-
cated, if the system under investigation is complex, but at least each part of the system
has an easier, more natural model.

For example, when using hybrid systems, there neither is a need to use unnatural
discretizations for continuous phenomena, because full continuous dynamics is allowed
in hybrid systems. Nor is there a need to represent the system dynamics with the inter-
esting but complicated discontinuous Carathéodory [Walter 1998] or Filippov solutions
[Aubin and Cellina 1984] to understand jumps in continuous processes, because dis-
crete jumps are allowed directly as separate elements in hybrid systems. The overall
system behavior can still be as complicated, and, in fact, a study of some behaviors
in terms of Carathéodory and Filippov solutions can be insightful. But the individual
parts of the hybrid system have a simpler behavior that can be understood and an-
alyzed by easier means. In our model for hybrid systems, the dynamical affects have
separate atomic programs that can be combined in flexible ways by program combina-
tors (Sect. 3).

We exploit the multi-dynamical systems philosophy in our analysis approach, be-
cause the logics we explain in the subsequent sections of this article have a fully com-
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positional semantics and fully compositional proof principles. Thus, since our proof
approach works by reasoning by parts, all the individual reasoning steps get easier,
because hybrid systems combine many but simpler dynamical aspects instead of re-
quiring a single inscrutable effect. Consequently, we can reason separately about the
individual parts of the hybrid systems.

2.4. Distributed Hybrid Systems
Distributed hybrid systems [Deshpande et al. 1996; Rounds 2004; Kratz et al. 2006;
Meseguer and Sharykin 2006; Gilbert et al. 2009; Platzer 2010c; Platzer 2012a; John-
son and Mitra 2012] are dynamical systems that combine distributed systems [Lynch
1996; Attie and Lynch 2001; Apt et al. 2010] with hybrid systems (and their discrete
and continuous dynamics). Again, they are not just combined side by side, but can
interact.

Distributed systems are systems consisting of multiple computers that interact
through a communication network. They feature both (discrete) local computation
and remote communication. Distributed hybrid systems, instead, consist of multiple
hybrid systems that interact through a communication network, but may also inter-
act through physical interactions. Distributed hybrid systems include multi-agent hy-
brid systems and hybrid systems where the number of agents involved in the system
evolves over time. A typical example is a distributed car control scenario (see Figure 2),

  (4)  (4)  (3)  (3)  (2)  (2)  (1)  (1)

   (  )  (  )

Fig. 2. Distributed car control

in which multiple cars drive on a road
and use sensing and/or communication
to inform each other of their respec-
tive positions and velocities and con-
trol intentions in order to coordinate
their actions to prevent collisions. Dis-
tributed hybrid systems become crucial,
e.g., when we do not know how many
agents are going to be involved exactly,
or when there are more agents than hy-
brid systems analysis could handle. Consequently, unlike in classical hybrid systems,
the state space of distributed hybrid systems is usually an infinite-dimensional vector
space X . Because of their importance in practical applications, many modeling ap-
proaches have been pursued for distributed hybrid systems [Deshpande et al. 1996;
Rounds 2004; Kratz et al. 2006; Meseguer and Sharykin 2006], including SHIFT
[Deshpande et al. 1996], R-Charon [Kratz et al. 2006], and the process algebra χ [van
Beek et al. 2006].

In distributed hybrid systems, we follow our multi-dynamical systems philosophy
and model each part of the system by the most appropriate dynamical aspect, whether
discrete or continuous or structural (e.g., changes in the communication topology or
changes in the physical configuration) or dimensional (e.g., appearance or disappear-
ance of cars on the street). In our model for distributed hybrid systems, the dynamical
affects have separate atomic programs that can be combined in flexible ways by pro-
gram combinators (Sect. 4). We exploit the multi-dynamical systems philosophy in our
analysis, logic, and proofs, so that we can reason separately about the individual parts
of a distributed hybrid system.

2.5. Stochastic Hybrid Systems
Stochastic hybrid systems [Davis 1984; Ghosh et al. 1997; Hu et al. 2000; Bujorianu
and Lygeros 2006; Cassandras and Lygeros 2006; Meseguer and Sharykin 2006; Kout-
soukos and Riley 2008; Fränzle et al. 2010; Platzer 2011b] are dynamical systems that
combine the dynamics of stochastic processes [Karatzas and Shreve 1991; Øksendal
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2007; Kloeden and Platen 2010] with hybrid systems. Again, they are not just com-
bined side by side, but can interact.

0.2 0.4 0.6 0.8 1.0

1

1

2

-

-

Fig. 3. Two samples from a switched continuous
stochastic process

There is more than one way in which
stochasticity has been added into hy-
brid systems models; see, e.g., Figure 3.
Stochasticity might be restricted to the
discrete dynamics, as in piecewise de-
terministic Markov decision processes
[Davis 1984], restricted to the continu-
ous and switching behavior as in switch-
ing diffusion processes [Ghosh et al.
1997], or allowed in many parts as in
so-called General Stochastic Hybrid Sys-
tems; see [Bujorianu and Lygeros 2006; Cassandras and Lygeros 2006] for an overview.
Stochastic hybrid systems models have the desire in common to add stochastic infor-
mation about uncertainties into the system dynamics. Hybrid systems and distributed
hybrid systems are limited to nondeterministic views and can only encode simple prob-
abilistic effects in their hybrid dynamics. For stochastic hybrid systems, the state space
is more complicated, because it has to be rich enough to define stochastic process tran-
sitions. But the time domain is still such that some transitions are in continuous time,
others are discrete steps in time.

In stochastic hybrid systems, we follow our multi-dynamical systems philosophy and
model each part of the system by the most appropriate dynamical aspect, whether
discrete or continuous, whether stochastic or not. In particular, there is no need to
represent the system dynamics with interesting but complicated concepts like semi-
martingales [Karatzas and Shreve 1991; Protter 2010]. The overall system behavior
can still be as complicated, and a study of some behaviors in terms of semimartingales
can be insightful. But the individual parts of the stochastic hybrid system have a sim-
pler behavior that can be understood and analyzed by easier means. In our model for
stochastic hybrid systems, the dynamical effects have separate atomic programs that
can be combined by program combinators (Sect. 5). We exploit the multi-dynamical
systems philosophy in our analysis, logic, and proofs, so that we can reason separately
about the individual parts of a stochastic hybrid system.

3. DIFFERENTIAL DYNAMIC LOGIC FOR HYBRID SYSTEMS
In this section, we study differential dynamic logic dL [Platzer 2007b; Platzer 2008a;
Platzer 2012b], the logic of hybrid systems, i.e., systems with interacting discrete and
continuous dynamics.

Hybrid systems [Alur et al. 1995; Branicky 1995; Henzinger 1996; Branicky et al.
1998; Davoren and Nerode 2000; Alur et al. 2000; Platzer 2008a; Platzer 2010a; Platzer
2008b; Platzer 2010b; Platzer 2012b] are a fusion of continuous dynamical systems and
discrete dynamical systems. They freely combine dynamical features from both worlds
and play an important role, e.g., in modeling systems that use computers to control
physical systems. Hybrid systems feature (iterated) difference equations for discrete
dynamics and differential equations for continuous dynamics. They, further, combine
conditional switching, nondeterminism, and repetition.

As a specification and verification language for hybrid systems, we have introduced
differential dynamic logic dL [Platzer 2007b; Platzer 2008a; Platzer 2008b; Platzer
2010b; Platzer 2012b]. The logic dL is based on first-order modal logic [Carnap 1946;
Hughes and Cresswell 1996] and dynamic logic [Pratt 1976; Harel et al. 2000] and
internalizes operational models of hybrid systems as first-class citizens, so that cor-
rectness statements about the transition behavior of hybrid systems can be expressed
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as logical formulas. In addition to all operators of first-order real arithmetic, the logic
dL provides parametrized modal operators [α] and 〈α〉 that refer to the states reachable
by hybrid system α and can be placed in front of any formula. The dL formula [α]φ ex-
presses that all states reachable by hybrid system α satisfy formula φ. Likewise, 〈α〉φ
expresses that there is at least one state reachable by α for which φ holds. These modal-
ities can be used to express necessary or possible properties of the transition behavior
of α.

We first explain the system model of hybrid programs that dL provides for mod-
eling hybrid systems (Sect. 3.1). Then we explain the logical formulas that dL pro-
vides for specification and verification purposes (Sect. 3.2). For reference, we provide
a short exposition of hybrid automata (Sect. 3.3) and relate them to hybrid programs.
Then, we explain reasoning principles, axioms, and proof rules for verifying dL formu-
las (Sect. 3.4). We subsequently show soundness and relative completeness theorems
(Sect. 3.5) and investigate stronger proof rules for differential equations (Sect. 3.6–3.9).
Finally, we briefly discuss an implementation in the theorem prover KeYmaera and ap-
plications (Sect. 3.10).

3.1. Regular Hybrid Programs
Differential dynamic logic uses (regular) hybrid programs (HP) [Platzer 2007b; Platzer
2008a; Platzer 2010b; Platzer 2012b] as hybrid system models. HPs are a program no-
tation for hybrid systems and combine differential equations with conventional pro-
gram constructs and discrete assignments. HPs form a Kleene algebra with tests
[Kozen 1997]. Atomic HPs are instantaneous discrete jump assignments x := θ, tests
?χ of a first-order formula1 χ of real arithmetic, and differential equation (systems)
x′ = θ&χ for a continuous evolution restricted to the domain of evolution χ, where x′
denotes the time-derivative of x. Compound HPs are generated from atomic HPs by
nondeterministic choice (∪), sequential composition (;), and Kleene’s nondeterministic
repetition (∗). We use polynomials with rational coefficients as terms here, but divi-
sions can be allowed as well when guarding against singularities of divisions by zero;
see [Platzer 2008a; Platzer 2010b] for details.

Definition 3.1 (Hybrid program). HPs are defined by the following grammar (α, β
are HPs, x a variable, θ a term possibly containing x, and χ a formula of first-order
logic of real arithmetic):

α, β ::= x := θ | ?χ | x′ = θ&χ | α ∪ β | α;β | α∗

The first three cases are called atomic HPs, the last three compound. The test action ?χ
is used to define conditions. Its effect is that of a no-op if the formula χ is true in the
current state; otherwise, like abort, it allows no transitions. That is, if the test succeeds
because formula χ holds in the current state, then the state does not change, and the
system execution continues normally. If the test fails because formula χ does not hold
in the current state, then the system execution cannot continue, is cut off, and not
considered any further.

Nondeterministic choice α ∪ β, sequential composition α;β, and nondeterministic
repetition α∗ of programs are as in regular expressions but generalized to a semantics
in hybrid systems. Nondeterministic choice α ∪ β expresses behavioral alternatives be-
tween the runs of α and β. That is, the HP α ∪ β can choose nondeterministically to
follow the runs of HP α, or, instead, to follow the runs of HP β. The sequential compo-
sition α;β models that the HP β starts running after HP α has finished (β never starts

1 The test ?χ means “if χ then skip else abort”. Our results generalize to rich-test dL, where ?χ is a HP for
any dL formula χ (Sect. 3.2).
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if α does not terminate). In α;β, the runs of α take effect first, until α terminates (if
it does), and then β continues. Observe that, like repetitions, continuous evolutions
within α can take more or less time, which causes uncountable nondeterminism. This
nondeterminism occurs in hybrid systems, because they can operate in so many differ-
ent ways, which is as such reflected in HPs. Nondeterministic repetition α∗ is used to
express that the HP α repeats any number of times, including zero times. When fol-
lowing α∗, the runs of HP α can be repeated over and over again, any nondeterministic
number of times (≥0).

These operations can define all classical WHILE programming constructs and all
hybrid systems [Platzer 2010b]. We, e.g., write x′ = θ for the unrestricted differential
equation x′ = θ& true. We allow differential equation systems and use vectorial nota-
tion. Vectorial assignments are definable from scalar assignments and ; using auxiliary
variables.2 Other program constructs can be defined easily [Platzer 2010b]. For exam-
ple, nondeterministic assignments of any real value to x, if-then-else statements, and
while loops can be defined as follows:

x := ∗ ≡ x′ = 1 ∪ x′ = −1

if (χ) then α else β fi ≡ (?χ;α) ∪ (?¬χ;β)

if (χ) then α ≡ (?χ;α) ∪ ?¬χ
while(χ)α ≡ (?χ;α)

∗
; ?¬χ

(2)

HPs have a compositional semantics. We define their semantics by a reachability
relation and refer to previous work for their trace semantics [Platzer 2007c; Platzer
2010b]. A state ν is a mapping from variables to R. The set of states is denoted S.
We denote the value of term θ in ν by [[θ]]ν . The state νdx agrees with ν except for the
interpretation of variable x, which is changed to d ∈ R. We write ν |= χ iff first-order
formula χ is true in state ν (defined in Sect. 3.2).

Definition 3.2 (Transition semantics of HPs). Each HP α is interpreted semanti-
cally as a binary reachability relation ρ(α) ⊆ S × S over states, defined inductively by

— ρ(x := θ) = {(ν, ω) : ω = ν except that [[x]]ω = [[θ]]ν}
— ρ(?χ) = {(ν, ν) : ν |= χ}
— ρ(x′ = θ&χ) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and ϕ(t) |= χ for all 0 ≤ t ≤ r for a so-

lution ϕ : [0, r]→ S of any duration r}; i.e., with ϕ(t)(x′)
def
= dϕ(ζ)(x)

dζ (t), ϕ solves the
differential equation and satisfies χ at all times [Platzer 2008a]

— ρ(α ∪ β) = ρ(α) ∪ ρ(β)
— ρ(α;β) = ρ(β) ◦ ρ(α) = {(ν, ω) : (ν, µ) ∈ ρ(α), (µ, ω) ∈ ρ(β)}
— ρ(α∗) =

⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true.

We refer to our book [Platzer 2010b] for a comprehensive background and for an elab-
oration how the case r = 0 (in which the only condition is ϕ(0) |= χ) is captured by the
above definition. Time itself is not special but implicit. If a clock variable t is needed
in a HP, it can be axiomatized by t′ = 1.

Example 3.3 (Single car). As an example, consider a simple car control scenario.
We denote the position of a car by x, its velocity by v, and its acceleration by a. From
Newton’s laws of mechanics, we obtain a simple kinematic model for the longitudinal
motion of the car on a straight road, which can be described by the differential equation

2A vectorial assignment x1 := θ1, . . . , xn := θn is definable by x̀1 := x1; . . . ; x̀n := xn;x1 := θ̀1; . . . ;xn := θ̀n
where θ̀i is θi with xj replaced by x̀j for all j.
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x′ = v, v′ = a. That is, the time-derivative of position is velocity (x′ = v) and, simulta-
neously, the derivative of velocity is acceleration (v′ = a). We restrict the car to never
drive backwards by specifying the evolution domain constraint v ≥ 0 and obtain the
continuous dynamical system x′ = v, v′ = a& v ≥ 0. In addition, suppose the car con-
troller can decide to accelerate (represented by a :=A) or brake (a :=−b), where A ≥ 0
is a symbolic parameter for the maximum acceleration and b > 0 a symbolic parameter
describing the brakes. The HP a :=A ∪ a :=−b describes a controller that can choose
nondeterministically to accelerate or brake. Accelerating will only sometimes be a safe
control decision, so the discrete controller in the following HP requires a test ?χ to be
passed in the acceleration choice:

cars ≡
(
((?χ; a :=A) ∪ a :=−b); x′ = v, v′ = a& v ≥ 0

)∗ (3)

This HP, which we abbreviate by cars, first allows a nondeterministic choice of accel-
eration (if the test χ succeeds) or braking, and then follows the differential equation
for an arbitrary period of time (that does not cause v to enter v < 0). The HP repeats
nondeterministically as indicated by the ∗ repetition operator. Note that the nondeter-
ministic choice (∪) in (3) can nondeterministically select to proceed with ?χ; a :=A or
with a :=−b. Yet the first choice can only continue if, indeed, formula χ is true about the
current state (then both choices are possible). Otherwise only the braking choice will
run successfully. With this principle, HPs elegantly separate the fundamental princi-
ples of (nondeterministic) choice from conditional execution (tests).

Which formula is suitable for χ depends on the control objective or property we care
about. A simple guess for χ like v ≤ 20 has the effect that the controller can only choose
to accelerate at lower speeds. This condition alone is insufficient for most control pur-
poses. We will refine χ in Example 3.7.

HPs are a program notation for hybrid systems. Hybrid automata [Alur et al. 1995;
Henzinger 1996] are an automaton notation for hybrid systems. Hybrid automata cor-
respond to finite automata with guards and reset relations annotated at edges and
with differential equations and evolution domain constraints annotated at nodes (de-
fined in detail in Sect. 3.3). The car system in (3) can be represented by the hybrid au-
tomaton in Figure 4. All hybrid automata can be represented as HPs [Platzer 2010b]

accel
x′ = v
v′ = a
v ≥ 0

brake
x′ = v
v′ = a
v ≥ 0

a :=−b

χ

a :=A

χ

Fig. 4. Hybrid automaton for a simple car

just like finite automata can be implemented in classical WHILE programs (Sect. 3.3).
An important phenomenon is that the evolution domain constraint in (3) and Fig-

ure 4 is too lax for many purposes. It does not specify when the continuous evolution
stops. Many systems are unsafe if the continuous evolution evolves forever without
giving the controller a chance to react. To model event-triggered systems, we would
augment the evolution domain constraint with a formula that prevents the continu-
ous evolution from missing important events. For example, we could add the evolution
domain constraint v ≤ 22 into the differential equation in (3) to ensure that the contin-
uous evolutions stop and the discrete controllers will react before the velocity increases
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beyond 22: (
((?χ; a :=A) ∪ a :=−b); x′ = v, v′ = a& v ≥ 0 ∧ v ≤ 22

)∗
In time-triggered systems, we would, instead, replace the continuous evolution in (3)
by t := 0; x′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ ε with a clock t with slope t′ = 1 that is reset
by a discrete assignment (t := 0) before the continuous evolution and whose value is
bounded (t ≤ ε in the evolution domain constraint) by a symbolic parameter for the
maximum reaction time ε > 0. Then, the continuous evolution stops at the latest after
ε time units so that the discrete controllers have a chance to react to situation changes.
Without such a bound on the reaction time, systems are rarely safe. The time-triggered
version of (3) is the following HP, which we abbreviate by carε:

carε ≡
(
((?χ; a :=A) ∪ a :=−b); t := 0; x′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ ε

)∗ (4)

Time-triggered models are closer to the implementation, because event-triggered mod-
els require permanent sensing. Event-triggered models are usually easier to verify but
time-triggered models are easier to implement and reveal important timing effects.

Observe that, at this point, we could try to investigate the reachability question
whether from a given state ν we can reach a state ω along car model cars from (3),
i.e., (ν, ω) ∈ ρ(cars), at which ω(x) is at a certain goal position. We could also study the
safety question whether for all states ω with (ν, ω) ∈ ρ(cars) it is the case that ω(v) < 10
is true. Instead of studying each of those questions with one ad-hoc notion for each
question, we follow a more principled approach and define a logic in which those and
many more general properties of hybrid systems can be expressed and verified. We
first discuss another instructive example, however.

Example 3.4 (Bouncing ball). Another intuitive example of a hybrid system is the
bouncing ball [Egerstedt et al. 1999]; see Figure 5. The bouncing ball is let loose in

(
h′ = v, v′ = −g&h ≥ 0;
if (h = 0) then
v := −cv

fi
)∗ h′= v

v′= −g
h ≥ 0v := −cv

h = 0

Fig. 5. Hybrid program, plot, and hybrid automaton of a bouncing ball

the air and is falling towards the ground. When it hits the ground, the ball bounces
back up and climbs until gravity wins and it starts to fall again. The bouncing ball fol-
lows the continuous dynamics of physical movement by gravity. It can be understood
naturally as a hybrid system, because its continuous movement switches from falling
to climbing by reversing its velocity whenever the ball hits the ground and bounces
back. Let us denote the height of the ball by h and the current velocity of the ball by v.
The bouncing ball is affected by gravity of force g > 0, so its height follows the differ-
ential equation h′′ = −g, i.e., the second time derivative of height equals the negative
gravity force. The ball bounces back from the ground (which is at height h = 0) after
an elastic deformation. At every bounce, the ball loses energy according to a damping
factor 0 ≤ c < 1. Figure 5 depicts a HP, an illustration of the system dynamics, and a
representation as a hybrid automaton.

The first line of the HP describes the continuous dynamics along the differential
equation h′ = v, v′ = −g (which is equivalent to h′′ = −g) restricted to (written &) the
evolution domain h ≥ 0 above the floor. In particular, the bouncing ball never falls
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through the floor. After the sequential composition (;), an if-then statement resets
velocity v to −cv by assignment v :=−cv if h = 0 holds at the current state. This as-
signment will change the direction from falling (the velocity v was negative before) to
climbing (the velocity −cv is nonnegative again) after dampening the velocity v by c.
Recall (2) for how if-then is defined. Finally, the sequence of continuous and discrete
statements can be repeated arbitrarily often, as indicated by the regular-expression-
style repetition operator (∗) at the end.

The hybrid automaton on the right of Figure 5 represents the same system as a HP.
It has one node: falling along the differential equation system h′ = v, v′ = −g restricted
to evolution domain h ≥ 0, above the floor. The hybrid automaton has one jump edge:
on the ground (h = 0), it can reset the velocity v to −cv and continue in the same node.

Note one strange phenomenon in the bouncing ball. It seems like the bouncing ball
will bounce over and over again, switching its direction in shorter and shorter periods
of time as indicated in Figure 5 (unless c = 0, which means that the ball will just lie
flat right away). Even worse, the ball will end up switching directions infinitely often
in a short amount of time. This controversial phenomenon is called Zeno behavior.

In reality, the ball bounces a couple of times and can then come to a standstill when
its remaining kinetic energy is insufficient. To model this phenomenon without the
need to have a precise physical model for all physical forces and frictions, we can allow
for the damping factor c to change at each bounce by adding c := ∗; ?(0 ≤ c < 1) before
v :=−cv. HP c := ∗ represents an uncountably infinite nondeterministic choice for c
as a nondeterministic assignment. Recall (2) for its definition. The subsequent test
?(0 ≤ c < 1) restricts the arbitrary choices for c to choices in the half-open interval [0, 1)
and discards all other choices. Now the bouncing ball can stop. This particular model
still allows a Zeno execution when each choice of c is c > 0, which can be removed by
imposing additional restrictions on the permitted choices of c.

To avoid technicalities, we consider only polynomial differential equations here and
refer to previous work [Platzer 2010a; Platzer 2010b] for how to handle hybrid systems
with more general differential equations, including differential equations with frac-
tions, differential inequalities [Walter 1998], differential-algebraic equations [Kunkel
and Mehrmann 2006], and differential-algebraic constraints with disturbances. Those
more general hybrid systems can be modeled by differential-algebraic programs, for
which there is an extension of dL called differential-algebraic dynamic logic DAL
[Platzer 2010a; Platzer 2010b]. There also is an extension of dL to temporal proper-
ties that gives hybrid programs a trace semantics. This extension is called differential
temporal dynamic logic dTL [Platzer 2010b; Platzer 2007c]. We refer to [Platzer 2010b]
for details.

3.2. dL Formulas
Differential dynamic logic dL [Platzer 2007b; Platzer 2008a; Platzer 2010b; Platzer
2012b] is a dynamic logic [Pratt 1976] for hybrid systems. It combines first-order real
arithmetic [Tarski 1951] with first-order modal logic [Carnap 1946; Hughes and Cress-
well 1996] and dynamic logic [Pratt 1976] generalized to hybrid systems. (Nonlinear)
real arithmetic is necessary for describing concepts like safe regions of the state space
and real-valued quantifiers are for quantifying over the possible values of system pa-
rameters. The modal operators [α] and 〈α〉 refer to all (modal operator [α]) or some
(modal operator 〈α〉) state reachable by following HP α.

Definition 3.5 (dL formula). The formulas of differential dynamic logic (dL) are de-
fined by the grammar (where φ, ψ are dL formulas, θ1, θ2 terms, x a variable, α a HP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀xφ | [α]φ
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The operator 〈α〉 dual to [α] is defined by 〈α〉φ ≡ ¬[α]¬φ. Operators >,≤, <,∨,→,↔
,∃x can be defined as usual, e.g., ∃xφ ≡ ¬∀x¬φ. We use the notational convention
that quantifiers and modal operators bind strong, i.e., their scope only extends to the
formula immediately after. Thus, [α]φ∧ψ ≡ ([α]φ)∧ψ and ∀xφ∧ψ ≡ (∀xφ)∧ψ. In our
notation, we also let ¬ bind stronger than ∧, which binds stronger than ∨, which binds
stronger than→,↔. Thus, ¬A∧B∨C → D∨E ∧F ≡ (((¬A)∧B)∨C)→ (D∨ (E ∧F )).

Definition 3.6 (dL semantics). The satisfaction relation ν |= φ for dL formula φ in
state ν is defined inductively and as usual in first-order modal logic (of real arithmetic):

— ν |= (θ1 = θ2) iff [[θ1]]ν = [[θ2]]ν .
— ν |= (θ1 ≥ θ2) iff [[θ1]]ν ≥ [[θ2]]ν .
— ν |= ¬φ iff it is not the case that ν |= φ.
— ν |= φ ∧ ψ iff ν |= φ and ν |= ψ.
— ν |= ∀xφ iff νdx |= φ for all d ∈ R.
— ν |= ∃xφ iff νdx |= φ for some d ∈ R.
— ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α).
— ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α).

If ν |= φ, then we say that φ is true at ν. A dL formula φ is valid, written � φ, iff ν |= φ
for all states ν.

A dL formula of the form A→ [α]B corresponds to a Hoare triple [Floyd 1967; Hoare
1969], but for hybrid systems. It is valid if, for all states: if dL formula A holds (in
the initial state), then dL formula B holds for all states reachable by following HP α.
That is, A→ [α]B is valid if B holds in all states reachable by HP α from initial states
satisfying A.

Example 3.7 (Single car). First, consider a very simple dL formula:

v ≥ 0 ∧A ≥ 0→ [a :=A; x′ = v, v′ = a]v ≥ 0

This dL formula expresses that, when, initially, the velocity v and maximal accelera-
tion A are nonnegative, then all states reachable by the HP in the [·] modality have
a nonnegative velocity (v ≥ 0). The HP first performs a discrete assignment a :=A
setting the acceleration a to maximal acceleration A, and then, after the sequential
composition (;), follows the differential equation x′ = v, v′ = a where the derivative of
the position x is the velocity (x′ = v) and the derivative of the velocity is the chosen
acceleration a (v′ = a). This dL formula is valid, because the velocity will never be-
come negative when accelerating. It could, however, become negative when choosing a
negative acceleration a < 0, which is what this simple dL formula does not allow.

Next, consider the following dL formula, where cars denotes the HP from (3) in Ex-
ample 3.3 that always allows braking but acceleration only when χ ≡ v ≤ 20 holds:

v ≥ 0 ∧A ≥ 0 ∧ b > 0→ [cars]v ≥ 0

This dL formula is trivially valid, simply because the postcondition v ≥ 0 is implied
by both the precondition and by the evolution domain constraint of (3). Because it
is implied by the precondition, v ≥ 0 holds initially. It is also implied by the evolu-
tion domain constraint and the system has no runs that leave the evolution domain
constraint. Note that this dL formula would not be valid, however, if we removed the
evolution domain constraint, because the controller would then be allowed nondeter-
ministically to choose a negative acceleration (a := −b) and stay in the continuous
evolution arbitrarily long.

A more interesting valid dL formula is the following, where carε denotes the time-
triggered HP from (4) with the choice χ ≡ 2b(x − m) ≥ v2 +

(
A + b

)(
Aε2 + 2εv

)
as
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acceleration constraint:
v2 ≤ 2b(m− x) ∧A ≥ 0 ∧ b > 0→ [carε]x ≤ m (5)

This dL formula expresses that if, initially, the velocity is not too large (v2 ≤ 2b(m− x))
compared to the braking b and remaining distance m − x to a stoplight m, and if A ≥
0 ∧ b > 0, then all states reachable by following HP carε satisfy the postcondition
x ≤ m, i.e., the car never passes the stoplight at position m.

The dL formula (5) expresses a safety property, because it says that carε always
remains safely before the stoplight. But that would be the case for car controllers that
never move. Yet, we can also express and prove liveness in dL by showing that the
car is able to (note the 〈·〉 modality) pass every point p by an appropriate choice of the
stoplight m:

ε > 0 ∧ −b > 0 ∧A ≥ 0→ ∀p ∃m 〈carε〉x ≥ p (6)
Statements of this type give alternations of quantifiers and of modalities. See [Platzer
2010b, Sections 2.9 and 7.3] and [Loos and Platzer 2011; Mitsch et al. 2012] for details
about models in which m changes dynamically as permission to move changes over
time and for details on the proof of dL formula (6).

Example 3.8 (Single car, multiple modalities). The fact that dL formula (5) is valid
shows that its assumption about the initial state is sufficient for safety. The logic dL
can be used to state and prove constraints that are both necessary and sufficient for
dynamical properties [Platzer 2010b, Chapter 7]. First, we consider what the proper
assumptions about the initial state should be for car control. The HP carε in (5), which
originates from (4), is a specific car control model deciding under which circumstance to
choose which control action. It would not make sense to require a controller to remain
safe even in circumstances where no safe control choice is left, e.g., when not even
immediate braking would be safe anymore. In dL, we can easily state that we want
carε to always remain safe at least from those states where braking remains safe:

v ≥ 0 ∧A ≥ 0 ∧ b > 0 ∧ [x′ = v, v′ = −b]x ≤ m→ [carε]x ≤ m (7)
This valid (and provable) dL formula says that if, initially, v ≥ 0 ∧ A ≥ 0 ∧ b > 0
holds and if x ≤ m would always hold if the decision were to brake immediately (i.e.
[x′ = v, v′ = −b]x ≤ m), then the more permissive control model carε also always re-
mains safe (i.e. [carε]x ≤ m), because it may accelerate instead, but, due to the choice
of constraint χ, will start braking in due time before m. This principle of using modal
formulas about simpler dynamical systems to describe states can be very useful for
systematically designing controllers. Formula (7) is very intuitive: if braking would be
safe, then carε will be safe, because it will notice in time when acceleration would not
be safe any longer.

The same principle can be used to design how to choose the constraint χ in carε.
Constraint χ is a design choice that determines under which circumstance the car
controller is allowed to choose to accelerate. Since, according to (4), the car controller
may possibly not have a chance to react again for up to ε time units, the car controller
can only choose to accelerate, if it would be safe to accelerate for ε time units, and,
after that, the car still has enough distance to brake (from its then faster velocity)
before reaching the stoplight m. This behavior can be expressed by the following dL
formula with two nested modalities, the first one for the acceleration for up to time ε,
the second one for subsequent braking:

[t := 0; x′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ ε][x′ = v, v′ = −b]x ≤ m
In rich-test dL, we can directly use dL formulas with such modalities as tests inside
HPs. These are useful and instructive for designing systems, but harder to implement,
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because they refer to future states reached when following a dynamics. This is perfect
for model-predictive control, but tests on static quantifier-free first-order arithmetic
formulas without modalities are easier to implement by simple arithmetic checks for
the concrete values of the current state.

The following equivalence shows that the assumption about the initial state in (5) is
necessary and sufficient and also explains how dL formulas (5) and (7) are related:

v ≥ 0 ∧ b > 0→
(
v2 ≤ 2b(m− x)↔ [x′ = v, v′ = −b]x ≤ m

)
This valid dL formula expresses that, if the initial velocity is nonnegative and the
braking constant is b > 0, then the car will always remain before the stoplight when
braking if and only if v2 ≤ 2b(m− x) holds for the initial state. Note that this dL for-
mula relates a dynamic statement ([x′ = v, v′ = −b]x ≤ m) about the behavior at all
future states of a dynamical system to a static statement about its present state. Be-
cause the dL formula is an equivalence (↔), it characterizes all states from which the
car can be controlled to remain safely before the stoplight. We refer to [Platzer 2010b,
Chapter 7] for more details on equivalent characterizations of dynamical constraints
and how they can be used for systematic design.

Example 3.9 (Bouncing ball). Consider the bouncing ball (with or without variable
damping coefficient c) from Example 3.4 and denote this HP by ball. The intuitive
property that, if gravity g is positive, the bouncing ball never bounces higher than its
initial height H is expressed by the following dL formula:

h = H ∧ h ≥ 0 ∧ g > 0→ [ball](0 ≤ h ≤ H)

This dL formula may be intuitive, but it is not valid, because the postcondition
0 ≤ h ≤ H will be violated if the initial velocity is positive (climbing). Assuming v ≤ 0
holds initially,

v ≤ 0 ∧ h = H ∧ h ≥ 0 ∧ g > 0→ [ball](0 ≤ h ≤ H)

will, however, still not lead to a valid formula, because the ball would then start falling,
but, if it is initially falling very fast (e.g., when dribbling a basket ball), then it will
jump back higher than its initial height, despite the damping coefficient c. We refer
to [Platzer 2010b] for more details and for properties of bouncing balls that are valid
(and provable).

The logic dL also supports more complicated nested properties and quantifiers like
∃p [α]〈β〉φ which says that there is a choice of parameter p (expressed by ∃p) such that
for all behaviors of HP α (expressed by [α]) there is a reaction of HP β (i.e., 〈β〉) that
ensures that φ holds in the resulting state. Likewise, ∃p ([α]φ ∧ [β]ψ) says that there
is a choice of parameter p that makes both [α]φ and [β]ψ true, simultaneously, i.e.,
that makes the conjunction [α]φ ∧ [β]ψ true, saying that formula φ holds for all states
reachable by runs of HP α and, independently, ψ holds after all runs of HP β. This
results in a very flexible logic for specifying and verifying even sophisticated properties
of hybrid systems, including the ability to refer to multiple hybrid systems at once in
a single formula. This flexibility is useful for computing invariants and differential
invariants [Platzer and Clarke 2008; Platzer and Clarke 2009a; Platzer 2010b].

3.3. Hybrid Automata
In this subsection, we discuss hybrid automata and show their close relation to hybrid
programs. Besides hybrid programs, hybrid automata [Alur et al. 1995; Henzinger
1996] are another popular notation for hybrid systems and there is a close connection
between both models, which we have seen in Examples 3.3 and 3.4. There are numer-
ous slightly different notions of hybrid automata or automata-based models for hybrid
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systems [Tavernini 1987; Alur et al. 1992; Nicollin et al. 1992; Alur et al. 1995; Bran-
icky 1995; Henzinger 1996; Alur et al. 1996; Branicky et al. 1998; Lafferriere et al.
1999; Davoren and Nerode 2000; Piazza et al. 2005; Damm et al. 2006]. We review
a hybrid automata model close to Henzinger’s [Henzinger 1996], yet with polynomial
differential equations even if the theoretical model allows others and even if verifica-
tion tools for hybrid automata focus on subclasses of hybrid automata, e.g., constant
[Henzinger et al. 1997; Frehse 2008] or linear dynamics.

Hybrid automata are graph models with two kinds of transitions: discrete jumps in
the state space caused by mode switches (edges in the graph), and continuous evolution
along continuous flows within a mode (vertices in the graph). Recall the automata in
Figure 4 from Example 3.3 and in Figure 5 from Example 3.4 as typical examples.

Definition 3.10 (Hybrid automaton). A hybrid automaton A consists of

— a finite set X = {x1, . . . , xn} of real-valued state variables, where n ∈ N is the dimen-
sion of A;

— a finite directed multigraph (i.e., graph that may have multiple edges between the
same pair of vertices) with vertices Q (as modes) and edges E (as control switches);

— flow conditions flowq in mode q ∈ Q, i.e., differential equations x′1 = θ1, . . . , x
′
n = θn

that determine the relationship of the continuous state variables xi and their time
derivative x′i during continuous evolution in mode q ∈ Q;

— evolution domain constraints domq, which are first-order real arithmetic formulas
over X that have to be true of the continuous state while in mode q ∈ Q;

— initial conditions initq, which are first-order real arithmetic formulas over X that are
true of the continuous state if the system starts in mode q ∈ Q;

— guard conditions guarde, i.e., which are first-order real arithmetic formulas over X
that determine whether the automaton can follow edge e ∈ E depending on whether
guarde is true of the current state value;

— resets resete along edge e ∈ E, which are lists of equalities x+
1 = θ1, . . . , x

+
n = θn where

θi is a term overX that determines x+
i , which denotes the new value of the continuous

state variable xi after following edge e ∈ E;

It is crucial to work with a computational representation [Henzinger 1996], e.g.,
as first-order real arithmetic formulas, instead of just arbitrary initial set of states
initq ⊆ Rn and an arbitrary relation flowq ⊆ Rn × Rn of variables and their derivatives
to describe the dynamics. Otherwise computational analysis becomes impossible. If
initq is an undecidable set, it may already be undecidable whether 0 is an initial state
(0 ∈ initq).

Definition 3.11 (Transition semantics of hybrid automata). The transition system
of a hybrid automaton A is a transition relation y defined as follows

— S := {(q, x) ∈ Q× Rn : x |= domq} is the state space;
— S0 := {(q, x) ∈ S : x |= initq} is the set of initial states;
— y ⊆ S×S is the transition relation defined as the union

⋃
e∈E

ey ∪ ⋃
q∈Q

q
y where

(1) (q, x)
ey (q̃, x̃) iff e ∈ E is an edge from q ∈ Q to q̃ ∈ Q in the hybrid automaton A

and x |= guarde and, further, x̃i = [[θi]]x for i = 1, . . . , n. (discrete transition).
(2) (q, x)

q
y (q, x̃) iff q ∈ Q and there is a function ϕ : [0, r]→ Rn that has a time

derivative ϕ′ : (0, r)→ Rn such that ϕ(0) = x, ϕ(r) = x̃ and such that
ϕ′i(ζ) = [[θi]]ϕ(ζ) at each ζ ∈ (0, r) and for i = 1, . . . , n, where ϕi is the projection
of ϕ to the i-th component. Further, ϕ(ζ) |= domq has to hold for each ζ ∈ [0, r].
(continuous transition).
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State σ ∈ S is reachable from state σ0 ∈ S0, denoted by σ0 y∗ σ, iff, for some n ∈ N,
there is a sequence of states σ1, σ2, . . . , σn = σ ∈ S such that σi−1 y σi for 1 ≤ i ≤ n.

Just like for classical discrete systems, where every finite automaton can be imple-
mented as a WHILE program, every hybrid automaton can be represented as a hybrid
program with a similar construction [Platzer 2010b]. NaÏ’ve compilation introduces
additional coding variables, however, which may make verification unnecessarily te-
dious compared to a direct natural representation as a hybrid program. The following
HP has been compiled from the hybrid automaton in Figure 4:

q := accel; /* initial mode is node accel */(
(?q = accel; x′ = v, v′ = a& v ≥ 0)

∪ (?q = accel; a :=−b; q := brake; ?v ≥ 0)
∪ (?q = accel ∧ χ; q := accel; ?v ≥ 0)
∪ (?q = brake; x′ = v, v′ = a& v ≥ 0)

∪ (?q = brake ∧ χ; a :=A; q := accel; ?v ≥ 0)
)∗

Note the difference of this HP compared to the natural HP in Example 3.3. Line 1
represents that, in the beginning, the current node q of the system is the initial node
accel. The HP represents each discrete and continuous transition of the automaton
as a sequence of statements with a nondeterministic choice (∪) between these transi-
tions. Line 2 represents a continuous transition of the automaton. It tests if the current
node q is accel, and then (i.e., if the test was successful) follows the differential equa-
tion system x′ = v, v′ = a restricted to the evolution domain v ≥ 0. Line 3 characterizes
a discrete transition of the automaton. It tests whether the automaton is in node accel,
resets a :=−b and then switches q to node brake. By the semantics of hybrid automata,
an automaton in node accel is only allowed to make a transition to node brake if the
evolution domain restriction of brake is true when entering the node, which is ex-
pressed by the additional test ?v ≥ 0 at the end of line 3. Observe that this test of the
evolution domain restriction generally needs to be checked as the last operation after
the guard and reset, because a reset like v := v − 1 could affect the outcome of the evo-
lution domain region test. In order to obtain a fully compositional model, HPs make
all these implicit side conditions explicit. Line 4 represents the discrete transition for
the self-loop at accel of the automaton. It tests the guard χ when in node accel, and, if
successful, switches q back to node accel, and checks the evolution domain constraint
v ≥ 0 of accel. Line 5 represents the continuous transition when staying in node brake
and following the differential equation system x′ = v, v′ = a restricted to the evolution
domain v ≥ 0. Line 6 represents the discrete transition from node brake of the automa-
ton to node accel, again testing the guard in the beginning and testing the evolution
domain constraint of accel at the end.

Lines 2–6 cannot run unless their tests succeed. In particular, at any state, the non-
deterministic choice (∪) among lines 2–6 reduces de facto to a nondeterministic choice
between either lines 2–4 or between lines 5–6. At any state, q can have value either
accel or brake (assuming these are different constants), not both. Consequently, when
q = brake, a nondeterministic choice of lines 2–4 would immediately fail the tests in
the beginning and not run any further. The only remaining choices that have a chance
to succeed are lines 5–6 then. In fact, only the single successful choice of line 5 would
remain if the second conjunct χ of the test in line 6 does not hold for the current state.
Note that, still, all four choices in lines 2–6 are available, but at least two of these
nondeterministic choices will always be unsuccessful. Note that executions of line 3,4,
or 6 would fail if the respective test at the end of those lines fails. Since v ≥ 0 is in
the evolution domain constraints of all nodes, however, the system gets stuck if v < 0,
which can only happen initially in this system. Finally, the repetition operator (∗) at
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the end of the HP expresses that the transitions of a hybrid automaton, as represented
by lines 2–6, can repeat arbitrarily often, possibly taking different nondeterministic
choices between lines 2–6 at every repetition.

We could have defined differential dynamic logic for hybrid automata instead of for
hybrid programs, because hybrid automata can be compiled to hybrid programs. The
primary reason why we chose a hybrid program representation instead of an automata
representation for our logic is because our verification works by structural decomposi-
tion and hybrid programs have a perfectly compositional semantics, which enables us
to use perfectly compositional proof rules (Sect. 3.4).

3.4. Axiomatization
We do not only use dL for specification purposes but also for verification of hybrid sys-
tems. That is, we use dL formulas to specify what properties of hybrid systems we are
interested in, and then use dL proof rules to verify them. The axioms and proof rules
of dL are syntactic, which means that we can use them to verify properties of hybrid
systems without having to recourse to their mathematical semantics. In Sect. 3.5, we
show that the semantics and proof rules of dL match completely, so we are not los-
ing anything by taking on a syntactic perspective on verification. Syntactic proof rules
are crucial, because they can be implemented and used computationally in a computer
(Sect. 3.10).

Our axiomatization of dL is shown in Figure 6. To highlight the logical essentials,
we use our axiomatization from our recent result [Platzer 2012b] that is simplified
compared to our earlier work [Platzer 2008a], which was tuned for automation. The
axiomatization we use here is closer to that of Pratt’s dynamic logic for conventional
discrete programs [Pratt 1976; Harel et al. 1977]. We use the first-order Hilbert calcu-
lus (modus ponens MP and ∀-generalization rule ∀) as a basis and allow all instances
of valid formulas of first-order real arithmetic as axioms. The first-order theory of real-
closed fields is decidable [Tarski 1951] by quantifier elimination. We write ` φ iff dL
formula φ can be proved with dL rules from dL axioms (including first-order rules and
axioms); see Figure 6. That is, a dL formula is inductively defined to be provable in the
dL calculus if it is an instance of a dL axiom or if it is the conclusion (below the rule
bar) of an instance of one of the dL proof rules G, MP, ∀, whose premises (above the
rule bar) are all provable. Our axiomatization in Figure 6 is phrased in terms of [·].
Corresponding axioms hold for 〈·〉 by the defined duality 〈α〉φ ≡ ¬[α]¬φ; see [Platzer
2010b] for explicit 〈·〉 rules.

Axiom [:=] is Hoare’s assignment rule. It uses substitutions to axiomatize discrete
assignments. To show that φ(x) is true after a discrete assignment, axiom [:=] shows
that it has been true before, when substituting the affected variable x with its new
value θ. Formula φ(θ) is obtained from φ(x) by substituting θ for x, provided x does not
occur in the scope of a quantifier or modality binding x or a variable of θ. All substitu-
tions in this paper require this admissibility condition. A modality [α] containing z :=
or z′ binds z (written z ∈ BV (α) for bound variable). Only variables that are bound by
HP α can possibly be changed when running α.

Tests are proven by assuming that the test succeeds with an implication in axiom
[?], because test ?χ can only make a transition when condition χ actually holds true.
From left to right, axiom [?] for dL formula [?χ]φ assumes that formula χ holds true
(otherwise there is no transition and thus nothing to show) and shows that φ holds
after the resulting no-op. The converse implication from right to left is by case distinc-
tion. Either χ is false, then ?χ cannot make a transition and there is nothing to show.
Or χ is true, but then also φ is true.

In axiom [′], y(·) is the (unique [Walter 1998, Theorem 10.VI]) solution of the sym-
bolic initial-value problem y′(t) = θ, y(0) = x. Given such a solution y(·), continuous
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[:=] [x := θ]φ(x)↔ φ(θ)

[?] [?χ]φ↔ (χ→ φ)

[′] [x′ = θ]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

[&] [x′ = θ&χ]φ↔ ∀t0=x0 [x′ = θ]
(
[x′ = −θ](x0 ≥ t0 → χ)→ φ

)
[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α;β]φ↔ [α][β]φ

[∗] [α∗]φ↔ φ ∧ [α][α∗]φ

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ)

C [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)) (v 6∈ α)

B ∀x [α]φ→ [α]∀xφ (x 6∈ α)

V φ→ [α]φ (FV (φ) ∩BV (α) = ∅)

G
φ

[α]φ

MP
φ→ ψ φ

ψ

∀ φ

∀xφ
Fig. 6. Differential dynamic logic axiomatization

evolution along differential equation x′ = θ can be replaced by a discrete assignment
x := y(t) with an additional quantifier for the evolution time t. It goes without saying
that variables like t are fresh in Figure 6. Notice that conventional initial-value prob-
lems are numerical with concrete numbers x ∈ Rn as initial values, not symbols x
[Walter 1998]. This would not be enough for our purpose, because we need to consider
all states in which the system could start, which may be uncountably many. That is
why axiom [′] solves one symbolic initial-value problem, because we could hardly solve
uncountable many numerical initial-value problems.

Nondeterministic choices split into their alternatives in axiom [∪]. From right to left:
If all α runs lead to states satisfying φ (i.e., [α]φ holds) and all β runs lead to states
satisfying φ (i.e., [β]φ holds), then all runs of HP α ∪ β, which may choose between
following α and following β, also lead to states satisfying φ (i.e., [α ∪ β]φ holds). The
converse implication from left to right holds, because α ∪ β can run all runs of α and all
runs of β. A general principle behind the dL axioms is most noticeable in axiom [∪]. The
equivalence axioms of dL are primarily intended to be used by reducing the formula on
the left to the (structurally simpler) formula on the right. With such a reduction, we
symbolically decompose a property of a more complicated system into separate prop-
erties of easier fragments α and β. This decomposition makes the problem tractable
and is good for scalability purposes. For these symbolic structural decompositions, it is
very helpful that dL is a full logic that is closed under all logical operators, including
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disjunction and conjunction, for then both sides in [∪] are dL formulas again (unlike in
Hoare logic [Hoare 1969]). This is also an advantage for computing invariants [Platzer
and Clarke 2008; Platzer and Clarke 2009a; Platzer 2010b].

Sequential compositions are proven using nested modalities in axiom [;]. From right
to left: If, after all α-runs, all β-runs lead to states satisfying φ (i.e., [α][β]φ holds), then
all runs of the sequential composition α;β lead to states satisfying φ (i.e., [α;β]φ holds).
The converse implication uses the fact that if after all α-runs all β-runs lead to φ (i.e.,
[α][β]φ), then all runs of α;β lead to φ (that is, [α;β]φ), because the runs of α;β are
exactly those that first do any α-run, followed by any β-run. Again, it is crucial that dL
is a full logic that considers reachability statements as modal operators, which can be
nested, for then both sides in [;] are dL formulas (unlike in Hoare logic [Hoare 1969],
where intermediate assertions need to be guessed or computed as weakest precondi-
tions for β and φ). Note that dL can directly express weakest preconditions, because
the dL formula [β]φ or any formula equivalent to it already is the weakest precondition
for β and φ. Strongest postconditions are expressible in dL as well.

Axiom [∗] is the iteration axiom, which partially unwinds loops. It uses the fact that
φ always holds after repeating α (i.e., [α∗]φ), if φ holds at the beginning (for φ holds
after zero repetitions then), and if, after one run of α, φ holds after every number of
repetitions of α, including zero repetitions (i.e., [α][α∗]φ). So axiom [∗] expresses that
[α∗]φ holds iff φ holds immediately and after one or more repetitions of α. Bounded
model checking corresponds to unwinding loops N times by axiom [∗] and simplifying
the resulting formula in the dL calculus. If the formula is invalid, a bug has been
found, otherwise N increases. We use induction axioms I and C for proving formulas
with unbounded repetitions of loops.

Axiom K is the modal modus ponens from modal logic [Kripke 1959; Kripke 1963;
Hughes and Cresswell 1996]. It expresses that, if an implication φ→ ψ holds after all
runs of α (i.e., [α](φ→ ψ)) and φ holds after all runs of α (i.e., [α]φ), then ψ holds after
all runs of α (i.e., [α]ψ), because ψ is a consequence in each state reachable by α.

Axiom I is an induction schema for repetitions. Axiom I says that, if, after any num-
ber of repetitions of α, invariant φ remains true after one (more) iteration of α (i.e.,
[α∗](φ→ [α]φ)), then φ holds after any number of repetitions of α (i.e., [α∗]φ) if φ holds
initially. That is, if φ is true after running α whenever φ has been true before, then,
if φ holds in the beginning, φ will continue to hold, no matter how often we repeat α in
[α∗]φ.

Axiom C, in which v does not occur in α (written v 6∈ α), is a variation of Harel’s
convergence rule, suitably adapted to hybrid systems over R. Axiom C expresses that,
if, after any number of repetitions of α, ϕ(v) can decrease after some run of α by 1
(or another positive real constant) when v > 0, then, if ϕ(v) holds for any v, then the
variant ϕ(v) holds for some real number v ≤ 0 after repeating α sufficiently often (i.e.,
〈α∗〉∃v≤0ϕ(v)). This axiom shows that positive progress with respect to ϕ(v) can be
achieved by running α. Note that positive progress is only sufficient if it is bounded
from below, otherwise progress could converge to zero before reaching the destination.

Axiom B is the Barcan formula of first-order modal logic, characterizing anti-
monotonic domains [Hughes and Cresswell 1996]. In order for it to be sound for dL,
x must not occur in α. It expresses that, if, from all initial values of x, all runs of α lead
to states satisfying φ, then, after all runs of α, φ holds for all values of x, because the
value of x cannot affect the runs of α, nor can x change during runs of α, since x 6∈ α.
The converse of B is provable3 [Hughes and Cresswell 1996, BFC p. 245] and called B.

3 From ∀xφ → φ, derive [α](∀xφ → φ) by G, from which K and propositional logic derive [α]∀xφ → [α]φ.
Then, first-order logic derives [α]∀xφ→ ∀x [α]φ, as x is not free in the antecedent.
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Axiom V is for vacuous modalities and requires that no free variable of φ (written
FV (φ)) is bound by α, because α then cannot change any of the free variables of φ.
It expresses that, if φ holds in a state, then it holds after all runs of α, because, by
FV (φ) ∩BV (α) = ∅, no variable that α can change occurs free in φ. The converse of V
holds, but we do not need it. Note that, unlike the other axioms, B, V, and [∗] are not
strictly required for proving dL formulas.

Rule G is Gödel’s necessitation rule for modal logic [Hughes and Cresswell 1996]. It
expresses that, if φ is valid, i.e., true in all states, then [α]φ is valid. Note that, quite
unlike rule G, axiom V crucially requires the variable condition that ensures that the
value of φ is not affected by running α [Platzer 2012b].

Rules MP and ∀ are as in first-order logic. Modus ponens (MP) expresses that if
we know that both φ → ψ and φ are valid, then ψ is a valid consequence. The ∀-
generalization rule (∀) expresses that if φ is valid, then so is ∀xφ.

The dL axiomatization in Figure 6 uses a modular dL axiom [&] that reduces differ-
ential equations with evolution domain constraints to differential equations without
them by checking the evolution domain constraint backwards along the reverse flow
[Platzer 2012b]. It checks χ backwards from the end of the evolution up to the initial
time t0, using that x′ = −θ follows the same flow as x′ = θ, but backwards. See Figure 7

t

x

χ

revert flow and time x0;
check χ backwards

x′ = θ

t0 = x0 r

x′ = −θ

Fig. 7. “There and back again” axiom [&] checks evo-
lution domain along backwards flow over time

for an illustration. To simplify notation,
we assume that the (vector) differential
equation x′ = θ in axiom [&] already in-
cludes a clock x′0 = 1 for tracking time.
The idea behind axiom [&] is that the
fresh variable t0 remembers the initial
time x0, then x evolves forward along
x′ = θ for any amount of time. After-
wards, φ has to hold if, for all ways
of evolving backwards along x′ = −θ for
any amount of time, x0 ≥ t0 → χ holds,
i.e., χ holds at all previous times that
are later than the initial time t0. Thus, φ is not required to hold after a forward evo-
lution if the evolution domain constraint χ can be left by evolving backwards for less
time than the forward evolution took.

The following loop invariant rule ind derives from G and I. Convergence rule con
derives from ∀-generalization, G, and C (like in C, v does not occur in α):

(ind)
φ→ [α]φ

φ→ [α∗]φ
(con)

ϕ(v) ∧ v > 0→ 〈α〉ϕ(v − 1)

ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)

While this is not the focus of this paper, we note that we have successfully used a
refined sequent calculus variant [Platzer 2008a] of the Hilbert calculus in Figure 6
for automatic verification of hybrid systems, including trains, cars, and aircraft; see
Sect. 3.10. Several different verification paradigms can be formulated for the dL calcu-
lus by choosing in which order to use the axioms, including proving by symbolic execu-
tion, proving by forward image computation, proving by backward image computation,
proving by fixpoint loops, and full deduction [Platzer 2010b].

Uses of real arithmetic, which, we denote by R, are decidable by quantifier elimina-
tion in real-closed fields [Tarski 1951].

Definition 3.12 (Quantifier elimination). A first-order theory admits quantifier
elimination if, with each formula φ, a quantifier-free formula QE(φ) can be associated
effectively that is equivalent (i.e., φ↔ QE(φ) is valid) and has no additional free vari-
ables or function symbols. The operation QE is further assumed to evaluate formulas
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without variables, yielding a decision procedure for closed formulas of this theory (i.e.,
formulas without free variables).

Quantifier elimination is decidable in the first-order logic of real-closed fields [Tarski
1951]. It exploits the special structure of real arithmetic to express quantified arith-
metic formulas equivalently without quantifiers.

Example 3.13 (Quantifier elimination). QE yields the equivalence:

QE(∃x (ax2 + bx+ c = 0)) ≡ (a 6= 0 ∧ b2 − 4ac ≥ 0) ∨ (a = 0 ∧ (b = 0→ c = 0))

In this particular case, the equivalence can be found by using the generic condition for
solvability of quadratic equations over the reals plus special cases when coefficients
are zero.

Quantifier elimination gives a decision procedure for real arithmetic [Tarski 1951]. Im-
plementations use partial cylindrical algebraic decomposition [Collins and Hong 1991],
virtual substitution [Weispfenning 1997], semidefinite programming relaxations [Par-
rilo 2003; Harrison 2007] for Stengle’s Positivstellensatz [Stengle 1973], or Gröbner
bases for the real Nullstellensatz [Platzer et al. 2009], which combine Gröbner bases
[Buchberger 1965] with Stengle’s real Nullstellensatz [Stengle 1973] and semidefinite
programming [Boyd and Vandenberghe 2004].

For the purposes of this survey, we denote the use of decidable real arithmetic and
quantifier elimination in proofs by R. More constructive deduction modulo proof rules,
which can be used to combine first-order real arithmetic with the proof calculus pre-
sented here and that are suitable for automation, have been reported in previous work
[Platzer 2008a; Platzer 2010a; Platzer 2010b]. Those are based on real-valued free
variables, Skolemization, Deskolemization, and the following lifting of quantifier elim-
ination in real-closed fields [Tarski 1951; Collins 1975].

LEMMA 3.14 (QUANTIFIER ELIMINATION LIFTING [PLATZER 2008A]). Quantifier
elimination can be lifted to instances of formulas of first-order theories that admit quan-
tifier elimination, i.e., to formulas that result from the base theory by substitution.

Example 3.15 (Single car). In order to illustrate how the dL calculus can be used
to prove dL formulas and identify parameter constraints required for them to be valid,
we consider a dL formula for the braking case of HP (3):

v ≥ 0 ∧ x ≤ m→ [a :=−b;x′ = v, v′ = a]x ≤ m (8)

Formula (8) claims a car would never run a stoplight if it starts before the stoplight
(x ≤ m) and is applying the brakes. Since braking is the safest operation for cars, we
might think that car control would always be safe in this most conservative scenario.
But that is not the case. If the car starts off too fast compared to the remaining distance
to the stoplight, then not even braking can prevent a crash. We can easily find out,
however, under which circumstance the dL formula (8) is valid by applying dL axioms
to it. The following dL proof reveals that (8) is valid if v2 ≤ 2b(m− x) holds initially:

v ≥ 0 ∧ x ≤ m→v2 ≤ 2b(m− x)
R v ≥ 0 ∧ x ≤ m→∀t≥0 (−b2 t

2 + vt+ x ≤ m)
[:=]v ≥ 0 ∧ x ≤ m→[a :=−b]∀t≥0 (a2 t

2 + vt+ x ≤ m)
[:=]v ≥ 0 ∧ x ≤ m→[a :=−b]∀t≥0 [x := a

2 t
2 + vt+ x]x ≤ m

[′] v ≥ 0 ∧ x ≤ m→[a :=−b][x′ = v, v′ = a]x ≤ m
[;] v ≥ 0 ∧ x ≤ m→[a :=−b;x′ = v, v′ = a]x ≤ m
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C → [a :=−b][x′′ = a]E 1
[a :=−b;x′′ = a]E ↔ [a :=−b][x′′ = a]E 2: by [;]

([a :=−b;x′′ = a]E ↔ [a :=−b][x′′ = a]E)→ ((C → [a :=−b][x′′ = a]E)→ (C → [a :=−b;x′′ = a]E)) 3: by R
(C → [a :=−b][x′′ = a]E)→ (C → [a :=−b;x′′ = a]E) 4: MP(2,3)
C → [a :=−b;x′′ = a]E 5: MP(4,1)

Fig. 8. dL Hilbert proof corresponding to bottom proof step in Example 3.15, abbreviating v ≥ 0∧x ≤ m by
C, x ≤ m by E, and x′ = v, v′ = a by x′′ = a

We follow the conventions in sequent calculus and read proofs bottom-up, from the
desired conclusion at the bottom to the premises at the top; see previous work [Platzer
2008a] for more details on a sequent calculus for dL. Here, we first apply the axiom [;]
to reduce the sequential composition equivalently to a nested modality. Then we use
axiom [′] to reduce the differential equation to an assignment with the solution and
a quantifier ∀t for its duration. Even though it is a quantifier over a real variable, we
cannot use the decision procedure of quantifier elimination for real-closed fields [Tarski
1951] to handle it, because we do not have a formula of first-order real arithmetic, but
still a dL formula with a modality expressing a property of all reachable states. Instead,
we first use axiom [:=] twice to equivalently substitute in the effect of the assignments.
Finally, we use equivalences of real arithmetic (using quantifier elimination, denoted
R) to discover the constraint v2 ≤ 2b(m− x), which is required to make (8) valid. Indeed,
if we add this so-discovered constraint about the initial state, the following dL formula
is provable in the dL calculus by a minor variation of the above dL proof:

v2 ≤ 2b(m− x) ∧ v ≥ 0 ∧ x ≤ m→ [a :=−b;x′ = v, v′ = a]x ≤ m

This construction explains why v2 ≤ 2b(m− x) has to be assumed in dL formula (5),
because braking is one of the choices for its HP carε. Constructions based on this prin-
ciple turn out to be very effective for discovering invariants [Platzer and Clarke 2008;
Platzer and Clarke 2009a; Platzer 2010b] and constraints on the free parameters of the
system [Platzer 2008a; Platzer and Quesel 2009; Platzer 2010b], or design constraints
for closed-loop properties [Aréchiga et al. 2012]. Another interesting observation is
that parameter constraints discovered in this way from precise proofs about simplified
models are useful for deriving design decisions about the full system, even for aspects
that have not been modeled, like camera resolutions and frame rates for video-based
car safety technology [Mitsch et al. 2012; Platzer 2010b].

The reader should note that we use an abbreviated notation for proofs here. With-
out abbreviations, the bottom-most proof step [:=] in the above proof expands to the
Hilbert-style dL proof shown in Figure 8, in which each line corresponds to a dL axiom
or the result of a dL proof rule applied to previous lines as indicated in the column
on the right. In this paper, we abbreviate Hilbert proofs by rewriting formulas using
the dL axioms directly, e.g., by replacing instances of the left-hand side of an equiva-
lence in a dL axiom by the corresponding (structurally) simpler right-hand side. This
abbreviated style can be understood systematically in a sequent calculus formulation
[Platzer 2008a] of the dL proof calculus.

For typesetting purposes for a dL proof for dL formula (5), let us abbreviate
x′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ ε in the HP carε from (5) by x′′ = a& t ≤ ε. Further-
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more, we abbreviate v2 ≤ 2b(m− x) ∧A ≥ 0 ∧ b > 0 by φ.

φ→(χ→ [a :=A][t := 0;x′′ = a& t ≤ ε]φ) ∧ [a :=−b][t := 0;x′′ = a& t ≤ ε]φ
[?] φ→[?χ][a :=A][t := 0;x′′ = a& t ≤ ε]φ ∧ [a :=−b][t := 0;x′′ = a]φ
[;] φ→[?χ; a :=A][t := 0;x′′ = a& t ≤ ε]φ ∧ [a :=−b][t := 0;x′′ = a& t ≤ ε]φ
[∪]φ→[(?χ; a :=A) ∪ a :=−b][t := 0;x′′ = a& t ≤ ε]φ
[;] φ→[((?χ; a :=A) ∪ a :=−b); t := 0;x′′ = a& t ≤ ε]φ
indφ→[(((?χ; a :=A) ∪ a :=−b); t := 0;x′′ = a& t ≤ ε)∗]φ
K,Gφ→[(((?χ; a :=A) ∪ a :=−b); t := 0;x′′ = a& t ≤ ε)∗]x ≤ m

The first (bottom-most) step uses that φ→ x ≤ m is provable in arithmetic. From this,
G proves [carε](φ → x ≤ m), and, thus, K proves [carε]φ → [carε]x ≤ m. The right
conjunct in the top-most premise can be proven by a minor variation of the dL proof
for (8). The dL proof for the left conjunct in the premise works similarly, but requires
slightly more involved arithmetic and the choice χ ≡ 2b(x−m) ≥ v2+

(
A+b

)(
Aε2+2εv

)
.

A full proof about a similar system can be found in our book [Platzer 2010b, Section
2.9].

3.5. Soundness and Completeness
The dL calculus is sound [Platzer 2008a; Platzer 2012b], that is, every formula that is
provable using the dL axioms and proof rules is valid, i.e., true in all states. That is,
for all dL formulas φ:

` φ implies � φ (9)

Soundness should be sine qua non for formal verification, but, for fundamental rea-
sons [Platzer and Clarke 2007; Collins 2007], is so complex for hybrid systems that
it is sometimes inadvertently forsaken. In logic, we ensure soundness easily just by
checking it locally once for each axiom and proof rule. Thus, no matter how compli-
cated a proof, the proven dL formula is valid, because it is a (complicated) consequence
of lots simple valid proof steps.

More intriguingly, however, our logical setting also enables us to ask the converse:
is the dL proof calculus complete, i.e., can it prove all that is true? That is, does the
converse of (9) hold? A simple corollary to Gödel’s incompleteness theorem shows that
already the fragments for discrete dynamical systems and for continuous dynamical
systems are incomplete.

THEOREM 3.16 (INCOMPLETENESS [PLATZER 2008A]). Both the discrete frag-
ment and the continuous fragment of dL are not effectively axiomatizable, i.e., they
have no sound and complete effective calculus, because natural numbers are definable
in both fragments.

PROOF. Gödel’s incompleteness theorem [Gödel 1931] applies to the discrete frag-
ment of dL, because natural numbers are definable in that fragment by repeated addi-
tion:

nat(n) ↔ 〈x := 0; (x := x+ 1)
∗〉 x = n

Gödel’s incompleteness theorem [Gödel 1931] applies to the continuous fragment of
dL, because an isomorphic copy of the natural numbers is definable using linear differ-
ential equations, which characterize solutions sin and cos, whose zeros (see Figure 9),
as detected by τ , correspond to natural numbers, scaled by π:

nat(n) ↔ ∃s∃c∃τ (s = 0 ∧ c = 1 ∧ τ = 0 ∧ 〈s′ = c, c′ = −s, τ ′ = 1〉(s = 0 ∧ τ = n))
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τ

s

π 3π 5π2π 4π

Fig. 9. Characterization of N as zeros of solutions of differential equations

Incompleteness is not unexpected since hybrid systems contain a computationally com-
plete sublanguage and because reachability of hybrid systems is not semidecidable
[Henzinger 1996]. Yet, it is instructive to understand the above simple proof based on
a classical result about logic.

In logic, the suitability of an axiomatization can still be established by showing com-
pleteness relative to a fragment [Cook 1978; Harel et al. 1977]. This relative complete-
ness, in which we assume we were able to prove valid formulas in a fragment and
prove that we can then prove all others, tells us how subproblems are related compu-
tationally. It tells us whether one subproblem dominates the others. Standard relative
completeness [Cook 1978; Harel et al. 1977], however, which works relative to the data
logic, is inadequate for hybrid systems, whose complexity comes from the dynamics, not
the data logic, first-order real arithmetic, which is perfectly decidable [Tarski 1951].

We have shown that both the original dL sequent calculus [Platzer 2008a] and the
Hilbert-type calculus in Figure 6 [Platzer 2012b] are sound and complete axiomati-
zations of dL relative to the continuous fragment (FOD). FOD is the first-order logic
of differential equations, i.e., first-order real arithmetic augmented with formulas ex-
pressing properties of differential equations, that is, dL formulas of the form [x′ = θ]F
with a first-order formula F . Note that axioms B and V are not needed for the proof of
the following theorem.

THEOREM 3.17 (RELATIVE COMPLETENESS OF dL [PLATZER 2008A; PLATZER 2012B]).
The dL calculus is a sound and complete axiomatization of hybrid systems relative to

FOD, i.e., every valid dL formula can be derived from FOD tautologies:

� φ iff TautFOD ` φ
This central result shows that we can prove properties of hybrid systems in the dL

calculus exactly as good as properties of differential equations can be proved. One di-
rection is obvious, because differential equations are part of hybrid systems, so we can
only understand hybrid systems to the extent that we can reason about their differen-
tial equations. We have shown the other direction by proving that all true properties of
hybrid systems can be reduced effectively in the dL calculus to elementary properties
of differential equations. Moreover, the dL proof calculus for hybrid systems can per-
form this reduction constructively and, vice versa, provides a provably perfect lifting
of every approach for differential equations to hybrid systems.

Another important consequence of this result is that decomposition can be successful
in taming the complexity of hybrid systems. The dL proof calculus is strictly composi-
tional. All proof rules prove logical formulas or properties of HPs by reducing them to
structurally simpler dL formulas. As soon as we understand that the hybrid systems
complexity comes from a combination of several simpler aspects, we can, hence, tame
the system complexity by reducing it to analyzing the dynamical effects of simpler
parts. This decomposition principle makes it possible for dL proofs to scale to interest-
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ing systems in practice. Theorem 3.17 gives the theoretical evidence why this principle
works in general, not just in the case studies we have considered so far. This is a good
illustration of our principle of multi-dynamical systems and even a proof that the de-
compositions behind the multi-dynamical systems approach are successful. Note that,
even though Theorem 3.17 proves (constructively) that every true property of hybrid
systems can be proved in the dL calculus by decomposition from elementary properties
of differential equations, it is still an interesting question which decompositions are
most efficient.

For an even more surprising “converse” result proving a sound and complete axiom-
atization of dL relative to the discrete fragment of dL, we refer to recent work [Platzer
2012b]. That proof is again a constructive reduction, proving that hybrid dynamics,
continuous dynamics, and discrete dynamics are proof-theoretically equivalently re-
ducible in the dL calculus. Even though the nature of each kind of dynamics is fun-
damentally different, they still enjoy a perfect proof-theoretical correspondence. In a
nutshell, we have shown that we can proof-theoretically equate:

“hybrid = continuous = discrete”
A discussion of this fundamental result about the nature of hybridness is beyond the
scope of this paper; we refer to previous work [Platzer 2012b].

3.6. Differential Invariants
The dL axiomatization in Figure 6 is sound and complete relative to FOD. But Figure 6
only has a very simple proof rule for differential equations ([′]) based on computing
a solution of the differential equation; we refer to previous work for discretization
techniques [Platzer 2012b]. For proving more complicated differential equations by in-
duction, dL provides differential invariants and differential variants [Platzer 2010a],
which have been introduced in 2008 [Platzer 2010a] and later refined to a procedure
that computes differential invariants in a fixed-point loop [Platzer and Clarke 2008;
Platzer and Clarke 2009a]. All premier proof principles for discrete loops are based on
some form of induction. Theorem 3.17 and its discrete converse [Platzer 2012b] prove
that verification techniques that are successful for discrete systems generalize to con-
tinuous and hybrid systems and vice versa. Differential invariants and differential
variants can be considered as one (of many possible) constructive and practical con-
sequences of this result. Differential induction defines induction for differential equa-
tions. It resembles induction for discrete loops (rule ind) but works for differential
equations instead and uses a differential formula (F ′θx′ , which we develop below) for
the induction step.

(DI)
χ→F ′θx′

F→[x′ = θ&χ]F

This differential induction rule is a natural induction principle for differential equa-
tions. The difference compared to ordinary induction for discrete loops is that the evo-
lution domain constraint χ is assumed in the premise (because the continuous evo-
lution is not allowed to leave its evolution domain constraint) and that the induction
step uses the differential formula F ′θx′ corresponding to formula F and the differential
equation x′ = θ instead of a statement that the loop body preserves the invariant. In-
tuitively, the differential formula F ′θx′ captures the infinitesimal change of formula F
over time along x′ = θ, and expresses the fact that F is only getting more true when
following the differential equation x′ = θ. The semantics of differential equations is
defined in a mathematically precise but computationally intractable way using an-
alytic differentiation and limit processes at infinitely many points in time. The key
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point about differential invariants is that they replace this precise but computation-
ally intractable semantics with a computationally effective, algebraic and syntactic
total derivative F ′ along with simple substitution of differential equations. The valu-
ation of the resulting computable formula F ′θx′ along differential equations coincides
with analytic differentiation.

Definition 3.18 (Derivation). The operator D that is defined as follows on terms is
called syntactic (total) derivation:

D(r) = 0 for numbers r ∈ Q (10a)
D(x) = x′ for variable x (10b)

D(a+ b) = D(a) +D(b) (10c)
D(a− b) = D(a)−D(b) (10d)
D(a · b) = D(a) · b+ a ·D(b) (10e)
D(a/b) = (D(a) · b− a ·D(b))/b2 (10f)

We extend it to (quantifier-free) first-order real-arithmetic formulas F as follows:

D(F ∧G) ≡ D(F ) ∧D(G) (11a)
D(F ∨G) ≡ D(F ) ∧D(G) (11b)
D(a ≥ b) ≡ D(a) ≥ D(b) accordingly for <,>,≤,= (11c)

We abbreviate D(F ) by F ′ and define F ′θx′ as the result of substituting θ for x′ in F ′,
which is a Lie-type operator [Lie 1893].

The conditions (10) define a derivation operator on terms that (11) lifts conjunctively
to logical formulas. It is important for the soundness of DI to define (F ∨G)′ as F ′ ∧G′,
because both subformulas need to satisfy the induction step, it is not enough if F sat-
isfies the induction step F ′ and G holds initially; see [Platzer 2010a; Platzer 2010b]
for details and alternatives. We assume for simplicity that formulas use dualities like
¬(a ≥ b) ≡ a < b to avoid negations; see [Platzer 2010a; Platzer 2010b] for a discussion
of this and the 6= operator. For a discussion why this definition of differential invari-
ants gives a sound approach and many other attempts would be unsound, we refer to
previous work [Platzer 2010a; Platzer 2010b]. We also refer to previous work [Platzer
2010b] for discussions about which weaker conditions like D(a > b) ≡ D(a) ≥ D(b) are
sound. It is crucial, however, to realize that it would generally be unsound to assume F
or the boundary of F in the premise. Otherwise, we could draw the counterfactual con-
clusion that −(x− y)2 ≥ 0 is an invariant of x′ = 1, y′ = y. See previous work [Platzer
2010a; Platzer 2010b; Platzer 2012d] for an explanation under which circumstances
this assumption would be sound.

¬ ¬FF F

Fig. 10. Differential
invariant F for safety

The basic idea behind rule DI is that the premise of DI shows
that the total derivative F ′ holds within evolution domain χ when
substituting the differential equations x′ = θ into F ′. If F holds
initially (antecedent of conclusion), then F itself always stays true
(succedent of conclusion). Intuitively, the premise gives a condi-
tion showing that, within χ, the total derivative F ′ along the dif-
ferential constraints is pointing inwards or transversally to F but
never outwards to ¬F ; see Figure 10 for an illustration. Hence, if
we start in F and, as indicated by F ′, the local dynamics never
points outside F , then the system always stays in F when following the dynamics.
Observe that, unlike F ′, the premise of DI is a well-formed formula, because all dif-
ferential expressions are replaced by non-differential terms when forming F ′θx′ . It is
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possible and insightful to give a meaning to the differential formula F ′ itself in differ-
ential states [Platzer 2010a]. Crucial for soundness is the result that the valuation of
syntactic derivatives along differential equations coincides with analytic differentia-
tion. This derivation lemma plays a role similar to the substitution lemma in classical
logic, but for derivations and differential equations. For simplicity, we report a deriva-
tion lemma that already combines differential substitution [Platzer 2010a, Lemma 2]
with the derivation lemma [Platzer 2010a, Lemma 1]. These results form the basis for
more general differential transformations [Platzer 2010b, Sect. 3.5].

LEMMA 3.19 (DERIVATION LEMMA [PLATZER 2010A]). Let x′ = θ&χ be a differ-
ential equation with evolution domain constraint χ and let ϕ : [0, r] → (V → R) be a
corresponding solution of duration r > 0, where V is the set of variables. Then for all
terms c and all ζ ∈ [0, r] :

d [[c]]ϕ(t)

dt
(ζ) = [[c′

θ
x′ ]]ϕ(ζ) .

In particular, [[c]]ϕ(t) is continuously differentiable.

Example 3.20 (Rotational dynamics). The rotational dynamics x′ = y, y′ = −x is
complicated to the extent that the solution involves trigonometric functions, which
are generally outside decidable classes of arithmetic (see proof of Theorem 3.16). Yet,
we can easily prove properties about the solution using DI and decidable polynomial
arithmetic. As a simple example, we can prove that x2 + y2 ≥ p2 is a differential in-
variant of the dynamics using the following dL proof:

true
R 2xy + 2y(−x) ≥ 0

(2xx′ + 2yy′ ≥ 0)
y
x′
−x
y′

DIx2 + y2 ≥ p2 →[x′ = y, y′ = −x]x2 + y2 ≥ p2

Example 3.21 (Quartic dynamics). The following simple dL proof uses DI to prove
an invariant of a quartic dynamics.

true

R a ≥ 0→2x2((x− 3)4 + a) ≥ 0

a ≥ 0→(2x2x′ ≥ 0)
(x−3)4+a
x′

DIx3 ≥ −1→[x′ = (x− 3)4 + a& a ≥ 0]x3 ≥ −1

Observe that rule DI directly makes the evolution domain constraint a ≥ 0 available
as an assumption in the premise, because the continuous evolution is never allowed to
leave it. This is useful if we have a strong evolution domain constraint or can make it
strong during the proof, which is what we consider in Sect. 3.8.

Counterexample 3.22 (Negative equations). It is crucial for soundness that we do
not define D(a 6= b) to be D(a) 6= D(b). Otherwise we could draw the wrong conclusion
that x 6= 0 is an invariant of x′ = 1 from the fact that D(x) 6= 0, i.e., 1 6= 0. This would
be counterfactual, because variable x can reach x = 0 without its derivative ever be-
ing 0. In fact, x can only reach x = 0 from an initial state x 6= 0 if its derivative is
nonzero at some point. Instead, we could define D(a 6= b) ≡ D(a) = D(b) if needed.
Intuitively, if a and b have the same derivative, then, a 6= b is an invariant if it
holds initially. This definition is already included, because we can equivalently rewrite
a 6= b to a > b ∨ a < b and use the weaker condition D(a > b) ≡ D(a) ≥ D(b) to obtain
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D(a > b ∨ a < b) ≡ D(a) ≥ D(b) ∧D(a) ≤ D(b), which is equivalent to D(a) = D(b).
Sometimes, it can be more efficient to split the reasoning into two cases, the case where
a > b and the case where a < b and consider them separately to prove that a > b is an
invariant if it was true initially and that a < b is an invariant if that was true initially,
instead of proving the stronger condition D(a 6= b) ≡ D(a) = D(b).

More advanced uses of differential invariants can be found in previous work [Platzer
2010a; Platzer and Clarke 2008; Platzer 2010b; Platzer and Clarke 2009b; Platzer and
Quesel 2009; Platzer 2012d]. Differential dynamic logic proofs with differential invari-
ants have been instrumental in enabling the verification of more complicated hybrid
systems, including separation properties in complex curved flight collision avoidance
maneuvers for air traffic control [Platzer 2010b; Platzer and Clarke 2009b], advanced
safety, reactivity and controllability properties of train control systems with distur-
bance and PI controllers [Platzer 2010b; Platzer and Quesel 2009], and properties of
electrical circuits [Platzer 2010b]. Differential invariants are also the proof technique
of choice for differential inequalities, differential-algebraic equations, and differential
equations with disturbances [Platzer 2010a; Platzer 2010b].

Differential invariants enjoy closure properties, e.g.:

LEMMA 3.23 (CLOSURE PROPERTIES OF DIFFERENTIAL INVARIANTS [PLATZER 2010A]).
Differential invariants are closed under conjunction, differentiation, and propositional
equivalences.

DI= DI=,∧,∨

DI> DI>,∧,∨

DI≥ DI≥,∧,∨

DI

DI≥,=,∧,∨

DI>,=,∧,∨

Fig. 11. Differential invariance chart

We refer to previous work [Platzer
2012d; Platzer 2010a] for more details
on the structure of differential invari-
ants and a complete investigation of
the relative deductive power of several
classes of differential invariants; see
Figure 11 for an overview of classes of
differential invariants restricted to the
operators as indicated, where strict in-
clusions of the deductive power are indi-
cated by ↪→, equivalences of deductive power are indicated by =, and incomparable
deductive powers are indicated by .

We also refer to previous work [Platzer 2010a; Platzer 2010b] for the technique
of differential axiomatization, which is useful for transforming sophisticated non-
polynomial differential equations into polynomial differential equations by introduc-
ing new variables. This is beneficial because, even though the solutions of the resulting
polynomial differential equations are still equally complicated, we never need the so-
lutions when working with differential invariants. Differential invariants depend on
the right-hand side of the differential equations, which is then polynomial and, thus,
leads to decidable arithmetic.

3.7. Differential Variants
Differential variants [Platzer 2010a] use ideas similar to those behind differential in-
variants, except that they use progress arguments so that differential variants can be
used to prove formulas of the form 〈x′ = θ&χ〉F . That is, differential variants prove
that the system can make progress along x′ = θ to finally reach F without having left χ
before; see the right side of Figure 10 for an illustration.

(DV)
∃ε>0 ∀x (¬F ∧ χ→ (F ′ ≥ ε)θx′)

[x′ = θ&∼F ]χ→〈x′ = θ&χ〉F
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χ

F

Fig. 12. Differential
variant for progress

In rule DV, F ′ ≥ ε is a mnemonic notation for replacing all
occurrences of inequalities a ≥ b in F ′ with a ≥ b+ ε and a > b
by a > b+ ε (accordingly for ≤, >,<). Intuitively, the premise ex-
presses that, wherever χ holds but F does not yet hold, the total
derivative is pointing towards F ; see right side of Figure 12. Espe-
cially, F ′ ≥ ε guarantees a minimum progress rate of ε towards F
along the dynamics. To further ensure that the continuous evolu-
tion towards F remains within χ, the antecedent of the conclusion
shows that χ holds until F is attained, which can again be proven
using DI. Overall, the premise of rule DV shows that the dynamics makes progress
(at least some ε) toward F , and the antecedent shows that the dynamics does not
leave the evolution domain restriction χ on the way to F . In this context, ∼F is a
shorthand notation for weak negation, i.e., the operation that behaves like ¬, except
that ∼(a ≥ b) ≡ a ≤ b and ∼(a > b) ≡ a ≤ b. Unlike negation ¬F , weak negation ∼F
retains the boundary of F , which is required in DV as χ needs to continue to hold
(including the boundary of F ) until F is reached. Especially, for rule DV, invariant χ
is not required to hold after F has been reached successfully. The operations F ′ ≥ ε
and ∼F are defined accordingly for other inequalities (in rule DV, we do not permit F
to contain equalities, because they could lead to unsoundness). We refer to previous
work [Platzer 2010a; Platzer 2010b] for details. Note that the order of quantifiers in
DV is crucial for soundness [Platzer 2010a; Platzer 2010b] to avoid Zeno progress that
never reaches F despite always getting closer.

Example 3.24 (Progress discovery). Consider the simple property 〈x′ = a〉x ≥ b, i.e.,
that we can finally reach region x ≥ b, when following the dynamics x′ = a long enough.
We analyze this dL formula in the following dL proof:

a > 0
R ∃ε>0 ∀x (x ≤ b→ a ≥ ε)
∃ε>0 ∀x (x ≤ b→ (x′ ≥ ε)ax′)

DV 〈x′ = a〉x ≥ b

As the dL proof reveals, the dL formula is valid if a > 0. This makes sense, because the
system dynamics is then evolving towards x ≥ b; otherwise it is evolving away from
x ≥ b (if a < 0) or is constant (a = 0). This proof constructs the answer that a > 0 is
the required condition, which illustrates how constraints on parameters can be found
by dL proofs. For the above proof, we do not need to solve the differential equations.
Solving the differential equation would be trivial here for a constant a, but is more
involved when a is an arbitrary term. With DV, we just form the total differential of
F ≡ x ≥ b, which gives F ′ = x′ ≥ b′. When we substitute in the differential equations
x′ = a, we obtain F ′ax′ ≡ a ≥ 0. Consequently, (F ′ ≥ ε)ax′ gives a ≥ ε. If we prove a ≥ ε
holds for one common minimum progress ε > 0, then the system makes some minimum
progress towards the goal and will reach it in finite time. This even holds if we restrict
the progress condition to all x that have not yet reached x ≥ b or are on the boundary
of x ≥ b, which is the assumption x ≤ b in the premise.

3.8. Differential Cuts
Differential cuts [Platzer 2010a] are another fundamental proof principle for differen-
tial equations. They can be used to strengthen assumptions in a sound way:

(DC)
F→[x′ = θ&χ]C F→[x′ = θ& (χ ∧ C)]F

F→[x′ = θ&χ]F
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true

R 5y4y2 ≥ 0

(5y4y′ ≥ 0)
(x−3)4+y5

x′
y2

y′

DIy5 ≥ 0→[x′ = (x− 3)4 + y5, y′ = y2]y5 ≥ 0

true

R y5 ≥ 0→2x2((x− 3)4 + y5) ≥ 0

y5 ≥ 0→(2x2x′ ≥ 0)
(x−3)4+y5

x′
y2

y′

DIx3 ≥ −1→[x′ = (x− 3)4 + y5, y′ = y2 & y5 ≥ 0]x3 ≥ −1

DC x3 ≥ −1 ∧ y5 ≥ 0→[x′ = (x− 3)4 + y5, y′ = y2]x3 ≥ −1

Fig. 13. Differential cut proof for multidimensional nonlinear dynamics

The differential cut rule works like a cut, but for differential equations. In the right
premise, rule DC restricts the system evolution to the subdomain χ ∧ C of χ, which
restricts the system dynamics to a subdomain but this change is a pseudo-restriction,
because the left premise proves that the extra restriction C on the system evolution
is an invariant anyhow (e.g. using rule DI). Rule DC is special in that it changes the
dynamics of the system (it adds a constraint to the system evolution domain region
that the resulting system is never allowed to leave by Def. 3.2), but it is still sound,
because this change does not reduce the reachable set. The benefit of rule DC is that
C will (soundly) be available as an extra assumption for all subsequent DI uses on
the right premise of DC. The differential cut rule DC can be used to strengthen the
right premise with more and more auxiliary differential invariants C that cut down
the state space and will be available as extra assumptions to prove the right premise,
once they have been proven to be differential invariants in the left premise.

Example 3.25 (Multidimensional nonlinear dynamics). The proof in Example 3.21
depends on evolution domain constraint a ≥ 0. If we replace variable a in Example 3.21
by a term, say y5, then we first need to use DC with the choice C ≡ y5 ≥ 0 and prove
that y5 ≥ 0 is indeed an invariant of the dynamics before we can use the proof from
Example 3.21, which depends on the evolution domain constraint y5 ≥ 0. In Exam-
ple 3.21, this is trivial since y has no differential equation, so that we assume y′ = 0 by
convention. Figure 13 shows a dL proof for a more interesting case, where y changes
during the continuous evolution. The proof uses DC once and DI twice.

Besides DI, the following simple proof rule for differential weakening also benefits from
strengthening evolution domain constraints via DC:

(DW)
χ→F

F→[x′ = θ&χ]F

This rule is obviously sound, because the system x′ = θ&χ, by definition, is never al-
lowed to leave the evolution domain constraint χ anyhow, hence, if χ implies F , then
F is an invariant, no matter what the dynamics x′ = θ does. The simple rule DW alone
cannot prove very interesting properties, because it only works when χ is very infor-
mative. It can, however, be useful in combination with DC with which we can soundly
restrict the evolution domain constraint to subregions.

Using differential cuts repeatedly in a process called differential saturation has
turned out to be extremely useful in practice and even simplifies the invariant search,
because it leads to several simpler invariants to find and prove instead of a single
complex property [Platzer and Clarke 2008; Platzer and Clarke 2009a; Platzer 2010b].

Differential cuts do not only help in practice, but are a fundamental proof principle
in theory. We have refuted the differential cut elimination hypothesis [Platzer 2010a].
Differential cuts have a simple intuition. Similar to a cut in first-order logic, they can
be used to first prove a lemma and then use it. By the seminal cut elimination theorem
of Gentzen [Gentzen 1935a; Gentzen 1935b], standard logical cuts do not change the
deductive power and can be eliminated, even if that may have significant cost [Boolos
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1984]. Unlike standard cuts, however, differential cuts actually increase the deductive
power [Platzer 2012d]. There are properties of differential equations that can only be
proven using differential cuts, not without them. Hence, differential cuts are a funda-
mental proof principle for differential equations.

THEOREM 3.26 (DIFFERENTIAL CUT POWER [PLATZER 2012D]). The deductive
power with differential cuts (rule DC) exceeds the deductive power without differential
cuts.

We refer to previous work [Platzer 2012d] for details on the differential cut elimination
hypothesis [Platzer 2010a], the proof of its refutation [Platzer 2012d], and a complete
investigation of the relative deductive power of several classes of differential invari-
ants.

3.9. Differential Auxiliaries
It is well-known that auxiliary variables may be necessary to conduct proofs about
conventional discrete programs. We have studied auxiliary differential variables, and
have shown that some differential equation systems can only be proven after intro-
ducing auxiliary differential variables into the dynamics [Platzer 2012d]. That is, the
addition of auxiliary differential variables increases the deductive power. This is cap-
tured in the following proof rule differential auxiliaries (DA) for introducing auxiliary
differential variables [Platzer 2012d]:

(DA)
φ↔ ∃y ψ ψ→[x′ = θ, y′ = ϑ&χ]ψ

φ→[x′ = θ&χ]φ

Rule DA is applicable if y is a new variable (or vector of variables) and the new dif-
ferential equation y′ = ϑ has global solutions on χ (e.g., because term ϑ satisfies a
Lipschitz condition [Walter 1998, Proposition 10.VII], which is definable in first-order
real arithmetic and thus decidable). Without a condition like this, adding y′ = ϑ could
limit the duration of system evolutions incorrectly. In fact, it would be sufficient for the
domains of definition of the solutions of y′ = ϑ to be no shorter than those of x.

Intuitively, rule DA can help proving properties, because it may be easier to charac-
terize how x changes in relation to auxiliary variables y that co-evolve with a suitable
differential equation (y′ = ϑ). We have proved that the addition of auxiliary differen-
tial variables increases the deductive power, even in the presence of differential cuts
[Platzer 2012d]. That is, there are system properties that can only be proven using aux-
iliary differential variables in the dynamics. Hence, auxiliary differential variables are
also a fundamental proof principle for differential equations.

THEOREM 3.27 (AUXILIARY DIFFERENTIAL VARIABLE POWER [PLATZER 2012D]).
The deductive power with auxiliary differential variables (rule DA) exceeds the deduc-

tive power without auxiliary differential variables even in the presence of differential
cuts.

3.10. Implementation and Applications
Differential dynamic logic [Platzer 2007b; Platzer 2008a; Platzer 2012b] and its proof
calculus [Platzer 2007b; Platzer 2008a], including differential invariants, differential
variants, and differential cuts [Platzer 2010a] have been implemented in the automatic
and interactive theorem prover KeYmaera [Platzer and Quesel 2008],4 which is based
on KeY [Beckert et al. 2007]. The name KeYmaera is a homophone to Chimæra, the

4Available at http://symbolaris.com/info/KeYmaera.html
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hybrid animal from ancient Greek mythology. KeYmaera implements a sequent cal-
culus version [Platzer 2008a] of the axiomatization in Figure 6, because the sequent
calculus is more suitable for automation. Differential dynamic logic forms the basis
for an automatic proof search procedure searching for invariants and differential in-
variants [Platzer and Clarke 2008; Platzer and Clarke 2009a; Platzer 2010b] that has
been implemented in KeYmaera.

Differential dynamic logic and KeYmaera have been used successfully for verify-
ing system-level properties of local lane controllers for highway car traffic [Loos et al.
2011], car controllers for intersections [Loos and Platzer 2011], intelligent speed adap-
tation for variable speed limit control and incident management by traffic centers on
highways [Mitsch et al. 2012], CICAS-SLTA left-turn assist controllers for cars at in-
tersections [Aréchiga et al. 2012], flyable roundabout collision avoidance maneuvers
for aircraft [Platzer and Clarke 2009b], the cooperation protocols of the European
Train Control System ETCS [Platzer and Quesel 2009], and analog circuits [Platzer
2010b]. KeYmaera has been used to prove safety requirements of a distributed eleva-
tor controller, medical robotic surgery systems, robotic factories, and to study biological
models. Properties proved about these systems using dL include safety, controllability,
reactivity, liveness, and characterization properties. More details about dL and some
of its applications are described in a book [Platzer 2010b] about the theory, practice,
and applications of dL and its extensions DAL for differential-algebraic hybrid systems
and dTL for temporal properties.

4. QUANTIFIED DIFFERENTIAL DYNAMIC LOGIC FOR DISTRIBUTED HYBRID SYSTEMS
In this section, we study quantified differential dynamic logic QdL [Platzer 2010c;
Platzer 2012a], the logic of distributed hybrid systems, i.e., systems that combine the
dynamics of distributed systems with the discrete and continuous dynamics of hybrid
systems.

Not all cyber-physical systems and certainly not all dynamical systems can be mod-
eled faithfully as hybrid systems. Cyber-physical systems typically combine communi-
cation, computation, and control. They may even form dynamic distributed networks,
where neither structure nor dimension stay the same while the system follows hybrid
dynamics.

Combining computation and control leads to hybrid systems, whose behavior in-
volves both discrete and continuous dynamics originating, e.g., from discrete control
decisions and differential equations of movement (Sect. 3). Combining communication
and computation leads to distributed systems [Lynch 1996; Attie and Lynch 2001; Apt
et al. 2010], whose dynamics are discrete transitions of system parts that communi-
cate with each other. They may form dynamic distributed systems, where the structure
of the system is not fixed but evolves over time and agents may appear or disappear
during the system evolution.

Combinations of all three aspects (communication, computation, and control) are
used in sophisticated applications, e.g., cooperative distributed car control [Hsu et al.
1991] and decentralized aircraft control [Pallottino et al. 2007]. Neither the structure
nor dimension of the system stay the same, because new cars can appear on the street
or leave it; see Figure 2 on p. 9. These systems are (dynamic) distributed hybrid sys-
tems [Deshpande et al. 1996; Rounds 2004; Kratz et al. 2006; Meseguer and Sharykin
2006; Gilbert et al. 2009; Platzer 2010c; Platzer 2012a]. More generally, distributed
hybrid systems are multi-agent hybrid systems that interact through remote commu-
nication or physical interaction. They cannot be considered just as a distributed system
(because, e.g., the continuous evolution of positions and velocities matters crucially for
collision freedom in car control) nor just as a hybrid system (because the evolving sys-
tem structure and appearance of new agents or structural changes in the system can
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make an otherwise collision-free system unsafe). It is generally not possible to split the
analysis of distributed hybrid systems soundly into an analysis of a distributed system
(without continuous movement) and an analysis of a hybrid system (without structural
changes or appearance), because all kinds of dynamics interact. Just like hybrid sys-
tems that are very difficult to analyze from a purely discrete or a purely continuous
perspective [Henzinger 1996]. See previous work [Platzer 2012b] for a complete discus-
sion of the relationship between discrete and continuous dynamics in hybrid systems.

As a formal logic for specifying and verifying correctness properties of distributed hy-
brid systems, we have introduced quantified differential dynamic logic (QdL) [Platzer
2010c; Platzer 2012a]. QdL extends dL to distributed hybrid systems. QdL combines
dynamic logic for reasoning about all ([α]φ) or some (〈α〉φ) system runs of a system α
[Harel et al. 2000] with many-sorted first-order logic for reasoning about all (∀i :C φ)
or some (∃i :C φ) objects of a sort C, e.g., the sort of all cars.

The most important defining characteristic of QdL is that α can be a distributed
hybrid system, because the QdL system model of quantified hybrid programs (QHP)
supports quantified operations that affect all objects of a sort C at once. If C is the
sort of cars, the quantified assignment ∀i :C a(i) := a(i) + 1 increases the respective
accelerations a(i) of all cars i at once by a single instantaneous discrete jump. It can
be used to model simultaneous discrete changes in multiple agents at once. Discrete
changes where only some of the cars change their acceleration, others do not, are easy
to model with quantified assignments by masking. The quantified differential equation
∀i :C v(i)′ = a(i) represents a continuous evolution of the respective velocities v(i) of all
cars i at the same time according to their acceleration by their respective differential
equations v(i)′ = a(i). Again, continuous evolutions where only some of the cars evolve,
others remain stopped, are easy to model with quantified differential equations by
masking. These quantified assignments and quantified differential equation systems
of QHPs are crucial for representing distributed hybrid systems where an unbounded
number of objects co-evolve simultaneously, because no finite set of classical assign-
ments and classical differential equations could represent that. Note that, because of
the close semantical relationship, we use the same quantifier notation ∀i :C for quan-
tified operations in programs and for quantifiers in logical formulas, instead of a sepa-
rate notation Πi:C for parallel products in programs.

Interaction by communication can be modeled by (possibly quantified) discrete as-
signments to share data between agents i and j in QHPs. Physical interaction, instead,
may be modeled either by (possibly quantified) discrete assignments when an agent i
activates a response in agent j by an instantaneous discrete action (e.g., pushing a
physical button) or by a (possibly quantified) differential equation involving multiple
agents i and j when they come into physical contact and act jointly over a (nonzero) pe-
riod of time (e.g., both agents jointly lifting and pulling on a rigid object). Observe that
the cyber structure of the system reconfigures dynamically when discrete communica-
tion topologies change, whereas the physical structure reconfigures dynamically when
agents engage in physical contact. QHPs for the latter case may involve structural
changes in the quantified differential equation.

We model the appearance of new participants in the distributed hybrid system, e.g.,
new cars entering the road, by a program n := newC. It creates a new object of type
C, thereby extending the range of all subsequent quantified assignments or quanti-
fied differential equations ranging over created objects of type C. With quantifiers
and function terms, new can be defined and handled in an entirely modular way; see
previous work [Platzer 2010c; Platzer 2012a] for details. Overall, dL, which we consid-
ered in Sect. 3, is for finite-dimensional hybrid systems, but QdL can handle evolving
or infinite-dimensional distributed hybrid systems. QdL and QHPs provide first-order
state variables and quantifiers (also in the dynamics) over the arguments of first-order
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function symbols, which is the fundamental enabling technique for distributed hybrid
systems. This difference of QdL compared to dL is as fundamental as that of first-order
logic compared to propositional logic, except that it also affects the dynamics not just
the formulas. The logic dL and HPs only support primitive variables x, v, a of type
R, whereas QdL supports first-order function symbols x(i), v(i), a(i), d(i, j) and quanti-
fiers, e.g., over i and j in the dynamics, so that an unbounded (instead of a statically
fixed finite) number of agents can be described by the dynamics.

The model of QHPs is of independent interest as a formal model for distributed hy-
brid systems. Inside a QHP, logical formulas can occur in state tests for conditional
execution. We thus explain logical formulas, terms, and sorts first. Conversely, how-
ever, a QHP α occurs inside the modalities ([α] and 〈α〉) of QdL formulas, which state
properties of the behavior of α. Hence, QHPs may occur inside QdL formulas yet for-
mulas may occur inside QHPs. The subsequent definitions of QdL and QHP are thus
to be understood by simultaneous induction.

We first explain the logical formulas that QdL provides for specification and veri-
fication (Sect. 4.1) and then explain the system model of quantified hybrid programs
that QdL provides for modeling distributed hybrid systems (Sect. 4.2). We define the
semantics (Sect. 4.3) and then explain reasoning principles, axioms, and proof rules
for verifying QdL formulas (Sect. 4.4). We then show soundness and relative complete-
ness theorems (Sect. 4.5) and investigate stronger proof rules for quantified differen-
tial equations (Sect. 4.6). Finally, we briefly discuss an implementation in the theorem
prover KeYmaeraD and applications (Sect. 4.7).

4.1. QdL Formulas
We have introduced quantified differential dynamic logic (QdL) [Platzer 2010c; Platzer
2012a], which is the first formal logic for specifying and verifying correctness prop-
erties of distributed hybrid systems. QdL is a combination of many-sorted first-order
logic with dynamic logic, generalized to a system model (QHPs) for distributed hybrid
systems.

4.1.1. Sorts. QdL supports a (finite) number of object sorts, e.g., the sort of all cars
and that of all aircraft. For continuous quantities of distributed hybrid systems like
positions or velocities, we add the sort R of real numbers. It would be easy to add
subtyping of sorts; see previous work [Beckert and Platzer 2006] for details. We refrain
from doing so, because that just obscures the logical essence of our approach.

The primary purpose of the sorts is to distinguish different kinds of objects in multi-
agent hybrid systems in which different kinds of agents occur, e.g., cars of sort C, traffic
lights of sort T , lanes of sort L, and aircraft of sort A.

4.1.2. Terms. QdL terms are built from a set of (sorted) function and variable sym-
bols as in many-sorted first-order logic. Each function symbol f has a fixed type
C1 × · · · × Cn → D for some n ∈ N and some sorts D,C1, . . . , Cn such that f only ac-
cepts argument terms θ1, . . . , θn of the respective sorts C1, . . . , Cn and then f(θ1, . . . , θn)
is a term of sort D. We use these function symbols to represent the state of the system
or other parameters. In a car control scenario like that in Figure 2, for example, we
could use function symbol x to represent the positions of cars, i.e., the term x(i) could
represent the position of car i and x(j) the position of car j. Similarly, the term v(i)
could represent the velocity of car i and a(i) its acceleration. These terms have sort R,
whereas a term l(i) that represents the car in front of car i has sort C.

Unlike in first-order logic, the interpretation of function symbols can change when
transitioning from one state to the other while following the dynamics of a distributed
hybrid system. The value of position x(i) will change over time as car i drives down the
street. The value of x(i) also changes if the argument term i changes its value and now
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refers to a different car than before. Objects may appear or disappear as the distributed
hybrid system evolves. We use function symbol

∃

(·) to distinguish between objects i
that actually exist (

∃

(i) = 1) and those that have not been created yet or exist no longer
(

∃

(i) = 0), depending on the value of

∃

(i), which may change its interpretation from
state to state. We use 0, 1,+,−, · with the usual notation and fixed semantics for real
arithmetic. For n ≥ 0 we abbreviate f(s1, . . . , sn) by f(~s) using vectorial notation and
we use ~s = ~t for component-wise equality.

4.1.3. Formulas. The formulas of QdL are defined as in first-order dynamic logic plus
many-sorted first-order logic

Definition 4.1 (QdL formula). The formulas of QdL are defined by the following
grammar (φ, ψ are formulas, θ1, θ2 are terms of the same sort, i is a variable of sort
C, and α is a QHP as defined in Sect. 4.2):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀i :C φ | [α]φ

We use standard abbreviations to define ≤, >,<,∨,→,∃ . The operator 〈α〉 dual to [α]
is again defined by 〈α〉φ ≡ ¬[α]¬φ. Similarly, ∃i :C φ ≡ ¬∀i :C ¬φ. Sorts C 6= R have no
ordering and only θ1 = θ2 is allowed, not θ1 ≥ θ2. For sort R, we abbreviate ∀x :R φ
by ∀xφ and ∃x :R φ by ∃xφ. All QdL formulas and terms have to be well-typed. For
instance, x(i) = l(i) is no formula if x has type C → R and l has type C → C for a sort
C 6= R or if i has a sort D 6= C. QdL formula [α]φ expresses that all states reachable
by QHP α satisfy formula φ. Likewise, 〈α〉φ expresses that there is at least one state
reachable by α for which φ holds.

For short notation, we allow conditional terms of the form ifφ then θ1 else θ2 fi (where
θ1 and θ2 have the same sort). This term evaluates to θ1 if the formula φ is true and
to θ2 otherwise. We generally consider formulas with conditional terms as abbrevi-
ations, e.g., ψ(ifφ then θ1 else θ2 fi) abbreviates (φ→ ψ(θ1)) ∧ (¬φ→ ψ(θ2)). Conditional
terms can be understood as an additional operator for terms and formulas as well.

Example 4.2 (Distributed car control). If i is a term of type C (for cars), let x(i)
denote the position of car i, v(i) its current velocity, and a(i) its current acceleration;
see Figure 2 on p. 9. A car control system is collision-free at a state if all cars are at
different positions (∀i6=j :C x(i) 6=x(j)). Without a quantifier we could not describe that
all cars on a highway are in a collision-free state, because there is a large number of
cars on the highway and we may not know how many. The car control system is globally
collision-free if it will always stay collision-free. The following QdL formula expresses
that a distributed car control system DCCS (we develop QHP models for DCCS later)
controls cars such that they are always collision-free:

(∀i, j :CM(i, j)) → [DCCS] ∀i 6=j :C x(i)6=x(j) (12)

It says that cars following the distributed hybrid systems dynamics of DCCS are al-
ways collision-free (postcondition), provided that DCCS starts in an initial state sat-
isfying a formula M(i, j) for all cars i, j (precondition). In particular, the modality
[DCCS] expresses that all states reachable by following the distributed hybrid system
DCCS satisfy the postcondition. The simple-most choice for the formulaM(i, j) in the
precondition is a formula that characterizes a simple compatibility condition: for dif-
ferent cars i 6= j, the car that is further down the road (i.e., with greater position)
neither moves slower nor accelerates slower than the other car, i.e.M(i, j) is

M(i, j) ≡ i 6= j →
(
(x(i) < x(j) ∧ v(i) ≤ v(j) ∧ a(i) ≤ a(j))

∨ (x(i) > x(j) ∧ v(i) ≥ v(j) ∧ a(i) ≥ a(j))
) (13)
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Based on a generalization of the dL formulas in Example 3.7, we can also choose the
following more permissive formula forM(i, j), which allows cars to drive more aggres-
sively with different accelerations, if only the respective safety distances are compati-
ble with the different velocities:

M(i, j) ≡ i 6= j → v(i) ≥ 0 ∧ v(j) ≥ 0∧(
(x(i) < x(j) ∧ v(i)2 < v(j)2 + 2b(x(j)− x(i)))

∨ (x(i) > x(j) ∧ v(j)2 < v(i)2 + 2b(x(i)− x(j)))
) (14)

This formula characterizes that, for different cars i 6= j, the car that is further down
the road is at a sufficient distance to allow its follower car to adapt its velocity by
braking to be no faster than the car that is already further down the road. With this
choice of M(i, j), observe the relationship of QdL formula (12) to dL formula (5) in
Example 3.7. For a more detailed and exhaustive study of possible initial conditions
and invariants for distributed car control, we refer to previous work [Platzer 2010c;
Platzer 2012a; Loos et al. 2011].

The reader should note that more sophisticated combinations of nested quantifiers
and modalities like the ones we considered for dL (e.g., Example 3.7) are possible with
QdL and its axiomatization in Sect. 4.4 as well.

4.2. Quantified Hybrid Programs
As a formal model for distributed hybrid systems, we have introduced quantified hy-
brid programs (QHPs) [Platzer 2010c; Platzer 2012a]. These are regular programs
from dynamic logic [Harel et al. 2000] to which we add quantified assignments and
quantified differential equation systems for distributed hybrid dynamics. From these
quantified assignments and quantified differential equations, QHPs are built like a
Kleene algebra with tests [Kozen 1997].

Definition 4.3 (Quantified hybrid program). QHPs are defined by the following
grammar (α, β are QHPs, i a variable of sort C, f is a function symbol, ~s is a vector of
terms with sorts compatible to the arguments of f , θ is a term with sort compatible to
the result of f , and χ is a formula of many-sorted first-order logic):

α, β ::= ∀i :C f(~s) := θ | ?χ | ∀i :C f(~s)′ = θ&χ | α ∪ β | α;β | α∗

In order to simplify technical difficulties, we impose regularity assumptions on f(~s)
in quantified assignments and quantified differential equations. We assume ~s to be
either a vector of length 0 or that the mapping from the quantified variable i to ~s is
injective. That is, each value of ~s can be exhibited by at most one choice of i. A system
is injective, e.g., when at least one component of ~s is the quantified variable i. These
assumptions can be relaxed, but are sufficient for our purposes; see Sect. 4.3 for a
discussion of injectivity. For quantified differential equations, we further assume that
f is an R-valued function symbol so that derivatives can be defined.

4.2.1. Quantified State Change. The effect of quantified assignment ∀i :C f(~s) := θ is an
instantaneous discrete jump assigning θ to f(~s) simultaneously for all objects i of sort
C. Hence all f(~s) that are affected by ∀i :C f(~s) := θ will change their value to the
respective θ simultaneously for all choices of i in a single discrete instant of time. Usu-
ally, i occurs in term θ, but does not have to. The effect of quantified differential equa-
tion ∀i :C f(~s)′ = θ&χ is a continuous evolution where, for all objects i of sort C, all
differential equations f(~s)′ = θ hold at the same time and formula χ holds throughout
the evolution (the state always remains in the region described by χ, i.e., the evolution
stops at any arbitrary time before it leaves χ). Again, i usually occurs in term θ. For the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: YYYY.



Dynamic Logics of Dynamical Systems A:41

trivial evolution domain restriction χ ≡ true, which is always satisfied, we also write
∀i :C f(~s)′ = θ instead of ∀i :C f(~s)′ = θ& true.

The dynamics of QHPs changes the interpretation of terms over time: f(~s)′ is in-
tended to denote the derivative of the interpretation of the term f(~s) over time dur-
ing continuous evolution, not the derivative of f(~s) by its argument ~s. For f(~s)′ to
be defined, we assume f is an R-valued function symbol. Although our approach can
be extended, we assume that f does not occur in ~s. The most common choice of ~s in
quantified assignments and quantified differential equations is just i. Other choices
are possible for ~s, e.g., ~s = (i, f(i)) in ∀i :C d(i, f(i)) := 1

2a(i) + 1
2a(f(i)). The latter QHP

could be used to model that, for each car i, the average acceleration of a car i and its
follower f(i) is assigned to a data field d(i, f(i)) that car i and its follower communicate
to determine their safe distance.

Time itself is not special but implicit. If a clock variable t is needed in a QHP, it can
be axiomatized by t′ = 1, which is equivalent to ∀i :C t′ = 1 where i does not occur in t.
For such vacuous quantification (i does not occur anywhere), we may omit ∀i :C from
assignments and differential equations, which are then classical assignments and or-
dinary differential equations as in HPs (Sect. 3). We may omit vectors ~s of length 0.

4.2.2. Regular Programs. The test ?χ of a first-order formula χ of real arithmetic is as in
HPs except that χ is a formula of many-sorted first-order logic. Compound QHPs are
generated from atomic QHPs by nondeterministic choice (∪), sequential composition
(;), and Kleene’s nondeterministic repetition (∗), just like in Sect. 3.1. The (decisive)
difference of QHPs of QdL compared to HPs of dL is that QHPs can contain quantified
assignments and quantified differential equations with first-order functions.

QHPs (with their semantics and our proof rules) can be extended to systems of quan-
tified differential equations, systems of simultaneous assignments to multiple func-
tions f, g, and statements with multiple quantifiers (∀i :C ∀j :D . . . ) similar to vecto-
rial generalizations in discrete programs [Beckert and Platzer 2006; Rümmer 2006].

Example 4.4 (Distributed car control). Continuous movement of position x(i) of car
i with acceleration a(i) is expressed by differential equation x(i)′′ = a(i), which corre-
sponds to the first-order differential equation system x(i)′ = v(i), v(i)′ = a(i) where v(i)
is the velocity of car i. Simultaneous movement of all cars with their respective accel-
erations a(i) is expressed by the quantified differential equation ∀i :C (x(i)′′ = a(i))
where quantifier ∀i :C ranges over all cars, such that all cars co-evolve along their
respective differential equations at the same time.

In addition to continuous dynamics, cars have discrete control. In the following QHP,
discrete and continuous dynamics interact (repeatedly because of the ∗ repetition op-
erator): (

∀i :C (a(i) := if ∀j :C far(i, j) thenA else −b fi); ∀i :C (x(i)′′ = a(i))
)∗ (15)

First, all cars i control their acceleration a(i). Each car i chooses maximum acceler-
ation A ≥ 0 for a(i) if its distance to all other cars j is far enough (some condition
far(i, j) that depends on the velocities and either on the acceleration of j or on re-
action times ε as in Example 3.7). Otherwise, i chooses full braking −b < 0. After all
accelerations have been set, all cars move continuously along ∀i :C (x(i)′′ = a(i)). Ac-
celerations may change repeatedly, because the repetition operator ∗ can repeat the
QHP after the continuous evolution stops, which it can do at any time. When DCCS
denotes QHP (15), the QdL formula (12) from Example 4.2 is valid, when choosing
(13) forM(i, j). For more elaborate car models, verification results, and formal proofs,
including verification results about distributed car control with dynamic appearance
and disappearance of cars on highways with arbitrarily many cars on arbitrarily many
lanes including onramps and exits, we refer to previous work [Platzer 2010c; Platzer
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2012a; Loos et al. 2011]. Observe that the QHP (15) requires car i to check far(i, j)
for all other cars j, which is easy to model, but hard to implement. We refer to previ-
ous work [Loos et al. 2011] for QdL proofs for distributed car control models that are
globally safe even though each car reaches its control decisions solely based on local
sensor/communication input and local control decisions.

Note that the presence of the function argument i in x(i), v(i), a(i) is a decisive dif-
ference when comparing the QHP in Example 4.4 to the HP in Example 3.3 and when
comparing the QdL formula in Example 4.2 to the dL formula in Example 3.7. In hy-
brid systems, we are limited to using variables x, v, a of a single car. If we want to add
a second car to a hybrid system model, we need to add new state variables y, w, c, new
dynamics y′ = w,w′ = c, and new control for the second car. We can keep on adding
any fixed finite number of state variables that way, but we need to know exactly how
many cars there are on the street. This does not work when we want to model and
verify situations with arbitrarily many cars or in distributed car control scenarios like
Figure 2, where new cars appear or disappear during the evolution of the system. A
quantified differential equation like ∀i :C (x(i)′ = v(i), v(i)′ = a(i)), for example, can-
not be expressed in hybrid systems, because we do not know how many cars i ranges
over. If i did range over exactly 3 cars, called 1, 2, and 3, we could replace it by

x(1)′ = v(1), v(1)′ = a(1), x(2)′ = v(2), v(2)′ = a(2), x(3)′ = v(3), v(3)′ = a(3)

and change notation to obtain primitive state variables x1, v1, a1, x2, v2, a2, x3, v3, a3 in
an ordinary differential equation system

x′1 = v1, v
′
1 = a1, x

′
2 = v2, v

′
2 = a2, x

′
3 = v3, v

′
3 = a3

But this replacement does not work unless we know exactly how many cars are in
the system. Even for systems with a fixed known but large number of participants,
such flat representations as (non-distributed) hybrid systems are inefficient, because
the system dimension is exponential in the number of participants and all reasoning
needs to be repeated for each participant, or even for each pair of participants (collision
freedom requires each pair of cars to remain safely separated).

In QdL formulas and in QHP models, we can leverage the distributed structure in
systems, make the models more expressive, and make the reasoning more efficient by
exploiting their first-order structure. Only in QdL can properties of distributed hybrid
systems with an unknown or evolving number of participants be proved. See previ-
ous work [Loos et al. 2011] for a detailed practical illustration of those phenomena in
verification of local and of distributed car control.

4.3. Semantics
The QdL semantics is a constant domain Kripke semantics [Fitting and Mendelsohn
1999] with first-order structures as states that associate total functions of appropriate
type with function symbols. In constant domain, all states share the same domain
for quantifiers. We choose to represent object creation not by changing the domain
of states, but by changing the interpretation of the createdness flag

∃

(i) of the object
denoted by i. With

∃

(i), object creation is definable in a modular way by masking the
effect of QHPs to objects i with

∃

(i) = 1 [Platzer 2010c; Platzer 2012a].

4.3.1. States. A state ν associates an (infinite) set ν(C) of objects with each sort C, and
it associates a function ν(f) of appropriate type with each function symbol f , including∃

(·). For simplicity, ν also associates a value ν(i) of appropriate type with each vari-
able i. The domain of R and the interpretation of 0, 1,+,−, · is that of real arithmetic.
We assume constant domain for each sort C: all states ν, ω share the same domains
ν(C) = ω(C) for C. Sorts C 6= D are disjoint: ν(C) ∩ ν(D) = ∅. The set of all states
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is again denoted by S, but different from the set of states of dL. The state νei agrees
with ν except for the interpretation of variable i, which is changed to e. We assume∃

(·) to have (unbounded but) finite support, i.e., each state only has a finite number of
positions i at which

∃

(i) = 1. This makes sense in practice, because there is a varying
and possibly large but still finite numbers of participants (e.g., cars).

4.3.2. Formulas. We use [[θ]]ν to denote the value of term θ at state ν, which is defined
as in first-order logic. Especially, [[θ]]νei

denotes the value of θ in state νei , i.e., in state
ν with i interpreted as e. Further, ρ(α) denotes the state transition relation of QHP α,
which we define below.

Definition 4.5 (QdL semantics). The interpretation ν |= φ of QdL formula φ with
respect to state ν is defined inductively as:

— ν |= (θ1 = θ2) iff [[θ1]]ν = [[θ2]]ν .
— ν |= (θ1 ≥ θ2) iff [[θ1]]ν ≥ [[θ2]]ν .
— ν |= ¬φ iff it is not the case that ν |= φ.
— ν |= φ ∧ ψ iff ν |= φ and ν |= ψ.
— ν |= ∀i :C φ iff νei |= φ for all objects e ∈ ν(C).
— ν |= ∃i :C φ iff νei |= φ for some object e ∈ ν(C).
— ν |= [α]φ iff ω |= φ for all states ω with (ν, ω) ∈ ρ(α).
— ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α).

If ν |= φ, then we say that φ is true at ν. QdL formula φ is valid, written � φ, iff ν |= φ
for all ν.

4.3.3. Programs. The transition semantics of QHPs is defined similar to the transition
semantics of HPs, except that the quantified assignments and quantified differential
equations need to be defined.

Definition 4.6 (Transition semantics of QHPs). The transition relation, ρ(α) ⊆ S ×
S, of QHP α specifies which state ω is reachable from ν by running QHP α. It is defined
inductively:

(1) (ν, ω) ∈ ρ(∀i :C f(~s) := θ) iff state ω is identical to ν except that at each position
~o of f : if [[~s]]νei

= ~o for some object e ∈ ν(C), then ω(f)
(
[[~s]]νei

)
= [[θ]]νei

. If there are
multiple objects e giving the same position [[~s]]νei

= ~o, then all of the resulting states
ω are reachable.

(2) (ν, ω) ∈ ρ(∀i :C f(~s)′ = θ&χ) iff there is a function ϕ:[0, r]→ S for some r ≥ 0 with
ϕ(0) = ν and ϕ(r) = ω satisfying the following conditions. At each time t ∈ [0, r],
state ϕ(t) is identical to ν, except that at each position ~o of f : if [[~s]]νei

= ~o for some
object e ∈ ν(C), then, at each time ζ ∈ [0, r]:
— All differential equations hold and corresponding derivatives exist (trivial for
r = 0):

d ([[f(~s)]]ϕ(t)ei
)

dt
(ζ) = [[θ]]ϕ(ζ)ei

— The evolution domain is respected: ϕ(ζ)
e
i |= χ.

If there are multiple objects e giving the same position [[~s]]νei
= ~o, then all of the

resulting states ω are reachable.
(3) ρ(?χ) = {(ν, ν) : ν |= χ}
(4) ρ(α ∪ β) = ρ(α) ∪ ρ(β)
(5) ρ(α;β) = ρ(β) ◦ ρ(α)
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(6) ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true.

The semantics is explicit change: nothing changes unless an assignment or differential
equation specifies how. In cases 1–2, only f changes and only at positions of the form
[[~s]]νei

for some interpretation e ∈ ν(C) of i. If there are multiple such e that affect the
same position ~o, any of those changes can take effect by a nondeterministic choice. QHP
∀i :C x := a(i) may change x to any a(i). Hence, [∀i :C x := a(i)]φ(x) ≡ ∀i :C φ(a(i)), be-
cause that modality considers all possibilities of changing x to any a(i). In contrast,
〈∀i :C x := a(i)〉φ(x) ≡ ∃i :C φ(a(i)), because that modality considers some possibility
of changing x to any a(i). Similarly, x can evolve along ∀i :C x′ = a(i) with any of the
slopes a(i). But evolutions cannot start with slope a(c) and then switch to a differ-
ent slope a(d) later. Any choice for the quantified variable i is possible but i remains
unchanged during each evolution.

We call a quantified assignment ∀i :C f(~s) := θ or a quantified differential equation
∀i :C f(~s)′ = θ&χ injective iff there is at most one e satisfying cases 1–2. For injective
quantified assignments and injective quantified differential equations, conditions 1–2
can be simplified as follows:

(1) (ν, ω) ∈ ρ(∀i :C f(~s) := θ) iff state ω is identical to ν except that for each e ∈ ν(C):
ω(f)

(
[[~s]]νei

)
= [[θ]]νei

.
(2) (ν, ω) ∈ ρ(∀i :C f(~s)′ = θ&χ) iff there is a function ϕ:[0, r]→ S for some r ≥ 0 with

ϕ(0) = ν and ϕ(r) = ω such that for each e ∈ ν(C) and each time ζ ∈ [0, r]:
— All differential equations hold and corresponding derivatives exist (trivial for
r = 0):

d ([[f(~s)]]ϕ(t)ei
)

dt
(ζ) = [[θ]]ϕ(ζ)ei

— The evolution domain is respected: ϕ(ζ)
e
i |= χ.

We call quantified assignments and quantified differential equations schematic iff ~s
is i (thus injective) and the only arguments to function symbols in θ are i. Schematic
quantified differential equations like ∀i :C f(i)′ = a(i) &χ are very common, because
distributed hybrid systems often have a family of similar differential equations repli-
cated for multiple participants i. Their synchronization often comes from discrete com-
munication on top of their continuous dynamics. Physically coupled differential equa-
tions are possible as well. They correspond to continuous physical interactions, e.g., if
a car bumps into another car from the side, it radically changes the structure of the
differential equations that determine its movement. Either case can be represented in
QHPs, even if the schematic case is more common.

4.4. Axiomatization
Our axiomatization of QdL is shown in Figure 14. To again highlight the logical essen-
tials, we use an axiomatization that is significantly simplified compared to our earlier
work [Platzer 2010c; Platzer 2012a]. The axiomatization we use here is in the spirit of
our simpler dL axiomatization that we show in Sect. 3.4. We use the first-order Hilbert
calculus (modus ponens MP and ∀-generalization rule ∀) as a basis and allow all in-
stances of valid formulas of many-sorted first-order logic and first-order real arith-
metic as axioms. The first-order theory of real-closed fields is decidable [Tarski 1951].
More constructive deduction modulo rules, which can be used to combine first-order
real arithmetic of many-sorted first-order logic with the proof calculus presented here
and are suitable for automation, have been reported in previous work [Platzer 2010c;
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[:] [∀i :C f(~s) := θ]Υ(~u)↔ Υ([∀i :C f(~s) := θ]~u) (f 6= Υ )

[:=] φ([∀i :C f(~s) := θ]f(~u))↔ if∃i :C ~s = [A]~u then∀i :C (~s = [A]~u→ φ(θ)) elseφ(f([A]~u)) fi

[:=]s φ([∀i :C f(i) := θ]f(u))↔ ∀i :C (i = [∀i :C f(i) := θ]u→ φ(θ))

[:∗] [∀j :C n := θ]φ(n)↔ ∀j :C φ(θ)

[?] [?χ]φ↔ (χ→ φ)

[′] [∀i :C f(~s)′ = θ]φ↔ ∀t≥0 [∀i :C f(~s) := y~s(t)]φ (y′~s(t) = θ ∀i)

[&] [∀i :C f(~s)′ = θ&χ]φ↔ ∀t0=x0 [∀i :C f(~s)′ = θ]
(
[∀i :C f(~s)′ = −θ](x0 ≥ t0 → χ)→ φ

)
[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α;β]φ↔ [α][β]φ

[∗] [α∗]φ↔ φ ∧ [α][α∗]φ

∃ ∃n :C

∃

(n) = 0 (C 6= R)

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ)

C [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)) (v 6∈ α)

B ∀x :C [α]φ→ [α]∀x :C φ (x 6∈ α)

V φ→ [α]φ (FV (φ) ∩BV (α) = ∅)

G
φ

[α]φ

MP
φ→ ψ φ

ψ

∀ φ

∀x :C φ

Fig. 14. Quantified differential dynamic logic axiomatization

Platzer 2012a]. Note that the combination of first-order real arithmetic augmented
with many-sorted function symbols is more challenging than the decidable first-order
arithmetic of real-closed fields used as a basis for dL. It can still be handled with
a combination of free variables, instantiation, requantification, and quantifier elimi-
nation [Platzer 2010c; Platzer 2012a], which we use to lift quantifier elimination to
the context of dL (Lemma 3.14) using real-valued free variables, Skolemization, and
Deskolemization for automation purposes [Platzer 2008a].

We write ` φ iff QdL formula φ can be proved with QdL rules from QdL axioms
(including first-order rules and axioms); see Figure 14.

The QdL axioms [?], [∪], [;], [∗], K, I, C, B, V, and rule G are as for dL in Sect. 3.4,
because QdL is a modular extension of dL and the operators ?, ∪ ,; , ∗ have the same
compositional semantics as in dL. We use the same first-order rules MP and ∀, except
that ∀ applies to variables x of any sort C. The axioms [:=], [:=]s, [:∗], [:] for quantified
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assignments, [′], [&] for quantified differential equations, and

∃

for object creation are
specific to QdL. Observe that, despite the radical semantical generalization, an impor-
tant principle of generalizing dL to QdL is modularity. One local, but decisive change is
from dL’s primitive variables to QdL’s first-order variables. The other changes are mod-
ular in the syntax, semantics, and axiomatization and consist in adding new cases for
quantified assignments and for quantified differential equations (and object creation).

Axiom [:] characterizes the fact that quantified assignments to f have no effect on all
other operators Υ 6= f (including other function symbols, ∧, if then else fi), so that Υ will
not be affected by the quantified assignment and can be skipped over. The argument
~u may still be affected by the quantified assignment, hence [:] prefixes ~u (component-
wise) by ∀i :C f(~s) := θ. Thus, the [:] axiom maps a quantified assignment over all ar-
guments homomorphically. For example, if Υ is an operator taking two arguments and
is not the function symbol f , then axiom [:] derives the proof step

[:]
Υ([∀i :C f(~s) := θ]u1, [∀i :C f(~s) := θ]u2)

[∀i :C f(~s) := θ]Υ(u1, u2)

Axiom [:=] characterizes how a quantified assignment to f affects the value of a term
f(~u). The effect depends on whether the quantified assignment ∀i :C f(~s) := θ matches
f(~u), i.e., there is a choice for i such that f(~u) is affected by the assignment, because
~u is of the form ~s for some i. Whether it matches or not cannot always be decided
statically, because it may depend on the particular interpretations. Hence, axiom [:=]
makes a case distinction on matching by yielding an if-then-else formula. The formula
ifφ thenφ1 elseφ2 fi is short notation for (φ→ φ1) ∧ (¬φ→ φ2). If the quantified assign-
ment does not match (else part), the occurrence of f in φ(f(~u)) will be left unchanged,
because f is not changed at position ~u. If it matches (then part), the term θ assigned
to f(~s) is used instead of f(~u), for all possible i : C that match f(~u). In all cases, the
original quantified assignment ∀i :C f(~s) := θ, which we abbreviate by A in [:=], will
be applied to ~u in the premise, because the value of argument ~u may also be affected
by A, recursively. Recall that axioms [:=] and [:] assume ∀i :C f(~s) := θ to be injective
or vacuous.

Axiom [:=]s is an important special case of [:=] that applies to the schematic case
where ~s is of the form i, which matches trivially. If f does not occur in u, then [:]
simplifies this further:

[:=]s,[:]
∀i :C (i = u→ φ(θ))

φ([∀i :C f(i) := θ]f(u))

When f does not occur in u, standard first-order reasoning can simplify further (θui is
the term θ with i replaced by u):

[:=]
φ(θui )

φ([∀i :C f(i) := θ]f(u))

Together with [:] to propagate the change to both arguments of 6=, this derived rule
proves, e.g., the following proof step:

∀j 6=k (− b
2s

2 + v(j)s+ x(j) 6= − b
2s

2 + v(k)s+ x(k))
[:=],[:] ∀j 6=k [∀i x(i) :=− b

2s
2 + v(i)s+ x(i)]x(j)6=x(k)

Axiom [:∗] reduces nondeterministic assignments to universal quantification. For the
handling of other general nondeterministic assignments and nondeterministic differ-
ential equations, we refer to previous work [Platzer 2010a; Platzer 2010b].

Axioms [:=],[:] also apply for assignments without quantifiers, which correspond
to vacuous quantification ∀i :C where i does not occur anywhere; see previous work
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[Platzer 2010c; Platzer 2012a]. That case amounts to a notational variant of the [:=]
axiom of dL from Figure 6. Vectorial extensions to systems of quantified assignments
and systems of quantified differential equations with multiple function symbols are
possible as well [Platzer 2010c; Platzer 2012a].

Axiom [′] handles continuous evolutions for quantified differential equations with
first-order definable solutions. The difference compared to the axiom [′] of dL is that
QdL handles infinite-dimensional quantified differential equation systems or quanti-
fied differential equation systems with evolving dimensions. Their solutions are no
longer expressible as assignments, but need quantified assignments. Given a solu-
tion for the quantified differential equation system with symbolic initial values f(~s),
continuous evolution along differential equations can be replaced with a quantified as-
signment ∀i :C f(~s) := y~s(t) corresponding to the simultaneous solution (of the differ-
ential equations ∀i :C f(~s)′ = θ with f(~s) as symbolic initial values) and an additional
quantifier for all evolution durations t ≥ 0.

For schematic cases like ∀i :C f(i)′ = a(i), first-order definable solutions can be ob-
tained by adding argument i to first-order definable solutions of the deparametrized
version f ′ = a. For example, the following proof step uses axiom [′] to turn a quantified
differential equation system into a quantified assignment with an extra quantifier for
the common duration t of the evolution.

∀t≥0 [∀i x(i) :=− b
2 t

2 + v(i)t+ x(i)]∀j 6=k x(j) 6=x(k)
[′] [∀i x(i)′ = v(i), v(i)′ = −b]∀j 6=k x(j) 6=x(k)

The quantified assignment ∀i x(i) :=− b
2 t

2 + v(i)t+ x(i) solving the above quantified
differential equation system can be obtained easily from the solution x :=− b

2 t
2 + vt+ x

of the deparametrized differential equation system x′ = v, v′ = −b, just by adding the
parameter i back in and checking whether this gives the solution.

The modular “there and back again” axiom [&] that reduces quantified differential
equations with evolution domain constraints to quantified differential equations with-
out them works as in dL (Sect. 3.4). For an explanation how quantified differential
equations have unique solutions as required for this to be sound, we refer to previous
work [Platzer 2010c; Platzer 2012a]. The QdL axioms [?], [∪], [;], [∗], K, I, C, B, V, and
rule G are as for dL, even if B and rule ∀ are now many-sorted.

Axiom

∃

expresses that, for sort C 6= R, there always is a new object n that has
not been created yet (

∃

(n) = 0), because domains are infinite. This is the only place
where we are using the assumption about infinite domains. The primary purpose is to
simplify technicalities that would arise if object creation could run out of objects and
may thus fail if, e.g., no more cars can be created; see previous work [Platzer 2010c;
Platzer 2012a] for details on object/agent creation.

Example 4.7 (Distributed car control). To illustrate how the QdL proof calculus
works, we use QdL axioms as shown in Figure 15 to identify when the QdL formula
at the bottom is valid. The QdL formula that we consider here follows the pattern of
the running example formula (12). We only consider the braking case for typesetting
reasons and refer to [Platzer 2012a] for a full proof. The case we consider is the dis-
tributed hybrid systems analog of dL formula (8) that we proved in Example 3.15. The
other difference compared to (12) is that the formula in Figure 15 has a weaker as-
sumption. It only assumes that cars start from different positions (∀i6=j x(i)6=x(j)), not
that they respect the compatibility constraint ∀i, j :CM(i, j). Like in Example 3.15,
we are using the QdL axioms to find out by the derivation in Figure 15 how we need to
chooseM(i, j) to ensure collision freedom.
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∀i6=j x(i)6=x(j)→∀j 6=k (x(j) ≤ x(k) ∧ v(j) ≤ v(k) ∨ x(j) ≥ x(k) ∧ v(j) ≥ v(k))
R ∀i6=j x(i)6=x(j)→∀j 6=k ∀t≥0 (− b

2 t
2 + v(j)t+ x(j) 6= − b

2 t
2 + v(k)t+ x(k))

R ∀i6=j x(i)6=x(j)→∀t≥0 ∀j 6=k (− b
2 t

2 + v(j)t+ x(j) 6= − b
2 t

2 + v(k)t+ x(k))
[:=]s∀i6=j x(i)6=x(j)→∀t≥0 ∀j 6=k [∀i x(i) :=− b

2 t
2 + v(i)t+ x(i)]x(j)6=x(k)

[:] ∀i6=j x(i)6=x(j)→∀t≥0 [∀i x(i) :=− b
2 t

2 + v(i)t+ x(i)]∀j 6=k x(j)6=x(k)
[′] ∀i6=j x(i)6=x(j)→[∀i x(i)′ = v(i), v(i)′ = −b]∀j 6=k x(j)6=x(k)

Fig. 15. Example of a QdL prove about collision-freedom of simple distributed car control

We start with the conjecture at the bottom of Figure 15 and successively reduce it
by using QdL axioms and proof rules. First, we use axiom [′] to turn the quantified
differential equation system into a quantified assignment with an extra quantifier for
the duration t of the evolution. The quantified differential equation system is easy
to solve. The quantified assignment ∀i x(i) :=− b

2 t
2 + v(i)t+ x(i) solving it can be ob-

tained easily from the solution x :=− b
2 t

2 + vt+ x of the deparametrized differential
equation system x′ = v, v′ = −b, just by adding the parameter i back in and checking
that the resulting terms solve the quantified differential equation. The premise of the
use of [′] has a quantifier ∀t as the top-most logical operator in the succedent. Even
though it is a quantifier over a real variable, we cannot use the decision procedure of
quantifier elimination for real-closed fields [Tarski 1951] to handle it, because we do
not have a formula of first-order real arithmetic, but still a QdL formula with a modal-
ity expressing a property of all reachable states. Instead, we use axiom [:] to skip over
the quantifier ∀j 6=k and then use axiom [:=]s or [:=] to let the quantified assignment to
x(i) (for all i) take effect on the postcondition x(j) 6= x(k) by skipping over the 6= with
axiom [:] (not shown in Figure 15) and then affecting x(j) and x(k) subsequently by
rule [:=]s.

At this point (premise of the top-most use of axiom [:=]s in Figure 15), we already
have a first-order formula and it looks like we could apply quantifier elimination for
real-closed fields [Tarski 1951] to the quantified real variable t. This would not work,
however, because quantifier elimination works from inside out and will try to elimi-
nate the inner quantifier ∀j 6=k before the outer quantifier ∀s. Yet, this formula is not
an instance of first-order real arithmetic (not even when using Lemma 3.14), but of
many-sorted first-order logic with quantified variables j, k of sort C, because there are
dependencies on the quantified variables j, k in function arguments, which is funda-
mentally more difficult [Platzer 2010b]. Instead, the proof in Figure 15 uses a tautology
of first-order logic (marked R) to commute the quantifiers. Now, we can apply quanti-
fier elimination for real-closed fields [Tarski 1951] as an equivalence in first-order logic
(written R), even though the formula is still not in first-order real arithmetic, because
function symbols like v(j) occur. However, it is an instance (v(j) for V and x(j) for X
and v(k) for W and x(k) for Y ) of the following formula of first-order real arithmetic:

∀s≥0
(
j 6=k → − b

2
s2 + V s+X 6= − b

2
s2 +Ws+ Y

)
(16)

and, thus, quantifier elimination can be lifted by Lemma 3.14. The result of quanti-
fier elimination is an instance (with the same instantiation as above) of the result of
applying QE to (16). Finally, we could use real arithmetic on the top-most formula,
as an instance of the following formula of plain first-order real arithmetic (with the
instantiation x(j) for X, v(j) for V , x(k) for Y , and v(k) for W )

j 6= k → X ≤ Y ∧ V ≤W ∨X ≥ Y ∧ V ≥W
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However, the formula is not valid, so the proof does not close. This is good news for
soundness, however, because the conjecture at the bottom of Figure 15 is not valid, un-
less the constraints at the top hold about the relation of the velocities and positions
of the cars. The constraints at the top of Figure 15 can be used to construct the con-
straints required for safety, which coincide withM(j, k) that we have shown in (13).

A comparison of the QdL proof in Example 4.7 compared to the dL proofs in Exam-
ple 3.15 shows that the interplay of instantiation in many-sorted first-order logic and
quantifier elimination in first-order real arithmetic is an important challenge when
reasoning about distributed hybrid systems. We refer to previous work [Platzer 2010c;
Platzer 2012a; Platzer 2008a; Renshaw et al. 2011] for details on how this can be au-
tomated in the QdL calculus.

4.5. Soundness and Completeness
Distributed hybrid systems have several independent sources of undecidability: dis-
crete dynamics, continuous dynamics, and structural/dimensional dynamics [Platzer
2010c; Platzer 2012a].

THEOREM 4.8 (INCOMPLETENESS OF QdL [PLATZER 2010C; PLATZER 2012A]).
The discrete fragment of QdL, the continuous fragment of QdL, and the fragment of QdL
with structural and dimension-changing dynamics are not effectively axiomatizable,
i.e., they have no sound and complete effective calculus, because natural numbers are
definable in each of those fragments.

PROOF. Incompleteness of the discrete fragment and of the continuous fragment
follows from Theorem 3.16. Gödel’s incompleteness theorem [Gödel 1931] applies to the
fragment with only structural and dimensional dynamics, because natural numbers
are definable in that fragment by chains of links along the values of a function p,
encoding zero by constant symbol z:

nat(n) ↔ 〈(?n 6= z; n := p(n))
∗〉 n = z.

For details on the characterization of addition and multiplication, we refer to the full
proof [Platzer 2012a]. The idea behind addition is shown in Figure 16: create a new

z

n

m
p

p
s = n+m

new copy of n append new copy of m

Fig. 16. Characterization of N addition with p links in dimensional dynamics

chain of links along the values of p by first creating exactly as many links as we can
follow along p when starting from n, and then continue creating exactly as many links
as we can follow along p when starting from m, instead. The number of links of the
result s is the sum of the respective numbers of links of n and m.

We have shown that the original QdL calculus [Platzer 2010c; Platzer 2012a]
is a sound and complete axiomatization of QdL relative to the continuous frag-
ment (FOQD). FOQD is the first-order logic of quantified differential equations, i.e.,
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(many-sorted) first-order logic with real arithmetic augmented with formulas ex-
pressing properties of quantified differential equations, that is, QdL formulas of the
form [∀i :C f(~s)′ = θ&χ]F . The dual formula 〈∀i :C f(~s)′ = θ&χ〉F is expressible as
¬[∀i :C f(~s)′ = θ&χ]¬F . A combination of the original proof [Platzer 2010c; Platzer
2012a] and the proof of Theorem 3.17 can be used to show that the simplified QdL
calculus in Figure 14 is sound and complete relative to FOQD.

THEOREM 4.9 (RELATIVE COMPLETENESS OF QdL [PLATZER 2010C; PLATZER 2012A]).
The QdL calculus is a sound and complete axiomatization of distributed hybrid sys-

tems relative to FOQD, i.e., every valid QdL formula can be derived from FOQD
tautologies:

� φ iff TautFOQD ` φ
This central result shows that properties of distributed hybrid systems can be proven

to exactly the same extent to which properties of quantified differential equations can
be proven. Proof-theoretically, the QdL calculus completely lifts verification techniques
for quantified continuous dynamics to distributed hybrid dynamics. Even though dis-
tributed hybrid systems have numerous independent sources of undecidability, we
have shown that all true QdL formulas can be proven in our QdL calculus, if only
we manage to tame the complexity of the continuous dynamics. Despite these new in-
dependent sources of undecidability, we have shown that QdL can still be axiomatized
completely relative to differential equations, only now they are quantified differential
equations.

Another important consequence of this result is that decomposition is successful in
taming the complexity of distributed hybrid systems. The QdL proof calculus is strictly
compositional. All QdL axioms and proof rules prove logical formulas or properties of
QHPs by reducing them to structurally simpler QdL formulas. As soon as we under-
stand that the distributed hybrid systems complexity comes from a combination of sev-
eral simpler aspects, we can, hence, tame the system complexity by reducing it to an-
alyzing the dynamical effects of simpler parts. This decomposition principle is exactly
how QdL proofs can scale to interesting systems in practice. The relative completeness
theorem 4.9 gives the theoretical evidence why this principle works in general. This is
yet another illustration of our principle of multi-dynamical systems and even a proof
that the decompositions behind the multi-dynamical systems approach are successful.

4.6. Quantified Differential Invariants
Differential invariants (Sect. 3.6) are the premier proof technique for proving prop-
erties of complicated differential equations, but they only work for hybrid systems.
Their generalization to quantified differential equations of distributed hybrid systems
is called quantified differential invariant [Platzer 2011a]. For quantified differential
equations, one of the extra challenges is that the system does not have a fixed finite
dimension but can be arbitrary-dimensional and even of evolving dimensions. Conse-
quently, there is not even a finite vector space in which the local directions of the vector
field of the differential equations can be described and checked. Instead we need a cri-
terion based on implicit properties of the local dynamics at uncountably many points
in an essentially infinite-dimensional vector field of evolving dimensions. We lift the
syntactic derivation operator from Sect. 3.6 to first-order for that purpose.
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Definition 4.10 (Quantified derivation). The operator D that is defined as follows
on terms is called (quantified) syntactic (total) derivation:

D(r) = 0 for r ∈ Q (17a)
D(x(s)) = x(s)′ for function symbol x : C → R with C 6= R discrete (17b)
D(a+ b) = D(a) +D(b) (17c)
D(a− b) = D(a)−D(b) (17d)
D(a · b) = D(a) · b+ a ·D(b) (17e)
D(a/b) = (D(a) · b− a ·D(b))/b2 (17f)

We extend D to first-order formulas F in prefix disjunctive normal form as follows:

D(∀i :C F ) ≡ ∀i :C D(F )

D(∃i :C F ) ≡ ∀i :C D(F )

D(F ∧G) ≡ D(F ) ∧D(G)

D(F ∨G) ≡ D(F ) ∧D(G)

D(a ≥ b) ≡ D(a) ≥ D(b) accordingly for <,>,≤,=.
The quantified differential induction rule is a natural induction principle for quantified
differential equations:

(DI)
χ→[∀i :C f(~i)′ := θ]D(F )

F→[∀i :C f(~i)′ = θ&χ]F

For a formula F if we can prove the premise of rule DI, i.e., that, after a differen-
tial substitution [∀i :C f(~i)′ := θ], the total derivative D(F ) is valid in the evolution
domain region χ, then the conclusion of DI is valid, i.e., the system always stays in
region F when it starts in F (left assumption in conclusion). It is important that we
add the quantified assignment ∀i :C f(~i)′ := θ for quantified differential symbol f(~i)′ as
a quantified differential substitution in the premise, because, otherwise, the premise of
DI is not a logical formula that would have a well-defined semantics when evaluated
in a state. Unlike F , the total derivative D(F ) contains differential function symbols
like f(i)′, which do not have a semantics in isolated states but only along a flow (an
insightful differential semantics can be defined but is beyond the scope of this arti-
cle). The quantified assignment defines a value for those differential function symbols,
which has a well-defined correspondence to the local dynamics of quantified differen-
tial equations based on a differential substitution property [Platzer 2011a, Lemma 2].
The conjunctive definition of D(F ∨G) is crucial (recallSect. 3.6) and so is the univer-
sal definition of D(∃i :C F ). Differential cuts DC (see Sect. 3.8) generalize to quantified
differential equations immediately [Platzer 2011a] and are as crucial as they are for
hybrid systems. A generalization of the derivation lemma (Lemma 3.19) to quantified
differential equations is a key argument to relate analytic differentiation and syntactic
derivations [Platzer 2011a, Lemma 1]. For details, see previous work [Platzer 2011a].

4.7. Implementation and Applications
Quantified differential dynamic logic and a sequent calculus variation of its proof
calculus [Platzer 2010c; Platzer 2012a], including quantified differential invariants
and quantified differential cuts [Platzer 2011a] have been implemented in the LCF-
style tactics-based theorem prover KeYmaeraD [Renshaw et al. 2011].5 The name

5Available at http://symbolaris.com/info/KeYmaeraD.html
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KeYmaeraD extends KeYmaera with a D for distributed, which represents the fact
that KeYmaeraD can prove distributed hybrid systems and the fact that KeYmaeraD
is implemented with an architecture that supports distributed and parallel proving of
both distributed and non-distributed hybrid systems.

Quantified differential dynamic logic and KeYmaeraD have been used successfully to
prove collision-freedom properties for distributed car controllers for arbitrarily many
cars on arbitrarily many lanes on straight highways [Platzer 2010c; Platzer 2012a;
Loos et al. 2011; Renshaw et al. 2011] and safe separation properties for roundabout
collision avoidance maneuvers for arbitrarily many aircraft with dynamic appearance
of aircraft during collision avoidance [Platzer 2011a]. They have also been used to
prove properties of advanced flight control protocols and medical robotic applications.

5. STOCHASTIC DIFFERENTIAL DYNAMIC LOGIC FOR STOCHASTIC HYBRID SYSTEMS
In this section, we study stochastic differential dynamic logic SdL [Platzer 2011b], the
logic of stochastic hybrid systems, i.e., systems that combine stochastic dynamics with
the discrete and continuous dynamics of hybrid systems.

In the previous sections, we have seen that logic of dynamical systems is a powerful
tool for analyzing and verifying dynamical systems, including hybrid systems (Sect. 3)
and distributed hybrid systems (Sect. 4). Some applications also exhibit a stochastic
behavior, however, either because of fundamental properties of nature, uncertain envi-
ronments, or simplifications to overcome complexity. Uncertainties can sometimes be
modeled well by taking a nondeterministic perspective where anything could happen
and we are not concerned with how probable which outcome is. Nondeterminism can be
used to model uncertainty in hybrid systems (Sect. 3) and distributed hybrid systems
(Sect. 4). That is useful, for example, if a car is uncertain about whether the car in front
of it will brake or accelerate, so that the follower car has to be prepared to handle ei-
ther choice safely. In other situations, however, stochastic models are needed to model
uncertainty. For example, a nondeterministic model of a lossy communication channel
would consider it possible for a message to arrive and possible for a message to dis-
appear during transmission. But then one possible resolution of the nondeterminisms
would cause all messages to disappear from all communication attempts, which is cer-
tainly possible, just extremely unlikely, except in adversarial situations. Whenever our
analysis would be too imprecise with a nondeterministic view or whenever we have
good stochastic models, probabilistic resolutions of uncertainties are more appropri-
ate. This is what we study in this section.

Discrete probabilistic systems have been studied successfully using logic [Kozen
1981; Kozen 1985; Feldman and Harel 1984; McIver and Morgan 2004]. In this sec-
tion, we present our dynamic logic of stochastic hybrid systems [Platzer 2011b], i.e.,
systems with interacting discrete, continuous, and stochastic dynamics. Our results
indicate that logic is a promising tool for understanding stochastic hybrid systems and
can help taming some of their complexity.

Classical logic is about boolean yes/no truth. That makes it tricky to use logic for
systems with stochastic effects. Logic has reached out into probabilistic extensions
at least for discrete programs [Kozen 1981; Kozen 1985; Feldman and Harel 1984;
McIver and Morgan 2004] and for first-order logic over a finite domain [Richardson and
Domingos 2006]. Logic has been used for the purpose of specifying system properties
in model checking finite Markov chains [Younes et al. 2006] and probabilistic timed
automata [Kwiatkowska et al. 2007].

Stochastic hybrid systems [Bujorianu and Lygeros 2006; Cassandras and Lygeros
2006; Hu et al. 2000; Platzer 2011b] are more general systems with interacting dis-
crete, continuous, and stochastic dynamics. There is not just one canonical way to add
stochastic behavior to a system model. Stochasticity might be restricted to the discrete
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dynamics, as in piecewise deterministic Markov decision processes [Davis 1984], re-
stricted to the continuous and switching behavior as in switching diffusion processes
[Ghosh et al. 1997], or allowed in many parts as in so-called General Stochastic Hy-
brid Systems; see [Bujorianu and Lygeros 2006; Cassandras and Lygeros 2006] for an
overview. Several different forms of combinations of probabilities with hybrid systems
and continuous systems have been considered, both for model checking [Cassandras
and Lygeros 2006; Koutsoukos and Riley 2008; Fränzle et al. 2010] and for simulation-
based validation [Meseguer and Sharykin 2006; Zuliani et al. 2010].

We have introduced a very different approach [Platzer 2011b] that is based on logic
for dynamical systems. We consider logic and proofs for stochastic hybrid systems6 to
transfer the success that logic has had in other domains. Our approach is partially
inspired by probabilistic PDL [Kozen 1985] and by barrier certificates for continuous
dynamics [Prajna et al. 2007]. We follow the arithmetical view that Kozen identified
as suitable for probabilistic logic [Kozen 1985]. Simple probabilistic effects can already
be encoded in real variables of dL and QdL, but general stochastic dynamics requires
the approach presented in this section.

Classical analysis is provably inadequate [Kloeden and Platen 2010] for analyzing
even simple continuous stochastic processes. We heavily draw on both stochastic cal-
culus and logic. It is not possible to present all mathematical background exhaustively
here. We provide basic definitions and intuition and refer to the literature for more
details and proofs [Platzer 2011b; Karatzas and Shreve 1991; Øksendal 2007; Kloeden
and Platen 2010].

We show the model of stochastic hybrid programs (SHPs) [Platzer 2011b] that com-
bine discrete stochastic dynamics and stochastic differential equations for continuous
stochastic dynamics, and we define a compositional semantics of SHP runs in terms of
stochastic processes. We have proved that the semantic processes are adapted, almost
surely have càdlàg paths, and that their natural stopping times are Markov times. We
have introduced stochastic differential dynamic logic (SdL) for specifying and verify-
ing properties of SHPs [Platzer 2011b]. We define a semantics and have proved that
the semantics is measurable such that probabilities are well-defined and probabilistic
questions become meaningful. We present proof rules for SdL and have proved their
soundness [Platzer 2011b]. SdL makes the rich semantical complexity and deep the-
ory of stochastic hybrid systems accessible in a simple syntactic language. This makes
the verification of stochastic hybrid systems possible with elementary syntactic proof
principles.

We first briefly recall the basics of stochastic processes and stochastic differential
equations (Sect. 5.1). Then we explain the system model of stochastic hybrid programs
that SdL provides for modeling stochastic hybrid systems (Sect. 5.2) and define their
semantics. We define the terms and logical formulas that SdL provides for specifica-
tion and verification (Sect. 5.3), show measurability results (Sect. 5.4) and then provide
reasoning principles, axioms, and proof rules for verifying SdL formulas (Sect. 5.5). We
then show soundness theorems (Sect. 5.6) and investigate proof rules for stochastic
differential equations (Sect. 5.7).

5.1. Preliminaries: Stochastic Differential Equations
We fix a dimension d ∈ N for the Euclidean state space Rd equipped with its Borel
σ-algebra B, i.e., the σ-algebra generated by all open subsets. A σ-algebra on a set Ω
is a nonempty set F ⊆ 2Ω that is closed under complement (E ∈ F implies Ω \ E ∈

6Note that there is a specific class of models called Stochastic Hybrid Systems [Hu et al. 2000]. We do not
mean this specific model in the narrow sense but refer to stochastic hybrid systems as the broader class of
systems that share discrete, continuous, and stochastic dynamics.
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F) and countable union (Ei ∈ F implies
⋃∞
i=1Ei ∈ F). Even though it could also be

constructed, we axiomatically fix a probability space (Ω,F , P ) with a σ-algebra F ⊆ 2Ω

of events on space Ω and a probability measure P on F . Function P : F → [0, 1] is a
probability measure on F if P is countable additive (i.e., P (

⋃∞
i=1Ei) =

∑∞
i=1 P (Ei)

when Ei ∩ Ej = ∅ for all i 6= j) and P ≥ 0, P (Ω) = 1. We assume the probability
space has been completed, i.e., every subset of a null set (i.e., P (A) = 0) is measurable.
A property holds P -almost surely (a.s.) if it holds with probability 1. A filtration is a
family (Ft)t≥0 of σ-algebras that is increasing, i.e., Fs ⊆ Ft for all s < t. Intuitively,
Ft are the events that can be discriminated at time t. We always assume a filtration
(Ft)t≥0 that has been completed to include all null sets and that is right-continuous,
i.e., Ft =

⋂
u>t Fu for all t. We generally assume the compatibility condition that F

coincides with the σ-algebra F∞ := σ
(⋃

t≥0 Ft
)

, i.e., the σ-algebra generated by all Ft.
For a σ-algebra Σ on a set D and the Borel σ-algebra B on Rd, function f : D → Rd is

measurable iff f−1(B) ∈ Σ for all B ∈ B (or, equivalently, for all open B ⊆ Rd). An Rd-
valued random variable is an F-measurable function X : Ω→ Rd. All sets and func-
tions definable in first-order logic over real arithmetic are Borel-measurable [Tarski
1951]. A stochastic process X is a collection {Xt}t∈T of Rd-valued random variables Xt

indexed by some set T for time. That is, X : T × Ω→ Rd is a function such that at all
t ∈ T , Xt = X(t, ·) : Ω→ Rd is a random variable. Process X is adapted to filtration
(Ft)t≥0 if Xt is Ft-measurable for each t. That is, the process does not depend on fu-
ture events. We consider only adapted processes (which can be ensured, e.g., by using
the completion of the natural filtration of a process or the completion of the optional
σ-algebra for F , see [Karatzas and Shreve 1991]). A process X is càdlàg iff its paths
t 7→ Xt(ω) (for each ω ∈ Ω) are càdlàg a.s., i.e., right-continuous (lims↘tXs(ω) = Xt(ω))
and have left limits (lims↗tXs(ω) exists).

We further need an e-dimensional Brownian motion W [Karatzas and Shreve 1991;
Øksendal 2007; Kloeden and Platen 2010], that is, W is a stochastic process start-
ing at 0 (W0 = 0) that is almost surely continuous and has independent increments
that are normally distributed with mean 0 and variance equal to the time difference,
i.e., Wt −Ws ∼ N (0, t− s). Brownian motion is mathematically extremely complex. Its
paths are a.s. continuous everywhere but a.s. differentiable nowhere and a.s. of un-
bounded variation. Thus, Brownian motion is a.s. not of finite variation, hence, stan-
dard integral notions are inapplicable. Brownian motion is also a.s. nonmonotonic on
every interval. Intuitively, W can be understood as the limit of a random walk. We
denote the Euclidean vector norm by |x| and use the Frobenius norm |σ| :=

√∑
i,j σ

2
ij

for matrices σ ∈ Rd×e.
We use stochastic differential equations [Øksendal 2007; Kloeden and Platen 2010]

to describe stochastic continuous system dynamics. They are like ordinary differential
equations but have an additional diffusion term that varies the state stochastically.
Stochastic differential equations are of the form dXt = b(Xt)dt+ σ(Xt)dWt. We con-
sider Itō stochastic differential equations, whose solutions are defined by the stochastic
Itō integral [Øksendal 2007; Kloeden and Platen 2010], which is a stochastic process.
Like in an ordinary differential equation, the drift coefficient b(Xt) determines the de-
terministic part of how Xt changes systematically over time as a function of its current
value. As a function of Xt, the diffusion coefficient σ(Xt) determines the stochastic in-
fluence by integration with respect to the Brownian motion process Wt. See Figure 17
for sample paths. Ordinary differential equations are retained for σ = 0. We focus on
the time-homogeneous case, where b and σ are time-independent, because time could
be added as an extra state variable if needed.
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Fig. 17. Sample paths with b = 1, σ = 1 (top) and b = 0, σ = 1 (bottom)

Definition 5.1 (Stochastic differential equation). A stochastic process X : [0,∞) ×
Ω→ Rd solves the (Itō) stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt (18)

with X0 = Z, if Xt = Z +
∫
b(Xt)dt+

∫
σ(Xt)dWt, where

∫
σ(Xt)dWt is an Itō inte-

gral process [Øksendal 2007; Kloeden and Platen 2010]. We assume b : Rd → Rd and
σ : Rd → Rd×e to be measurable and locally Lipschitz-continuous, i.e., for all N there is
a C such that for all x, y with |x|, |y| ≤ N :

|b(x)− b(y)| ≤ C|x− y| and |σ(x)− σ(y)| ≤ C|x− y|
As an integral of an a.s. continuous process, solution X has a.s. continuous paths
[Øksendal 2007]. Local Lipschitz-continuity guarantees that the a.s. continuous so-
lution X is pathwise unique [Kloeden and Platen 2010, Ch 4.5] and enables us to
compute the infinitesimal generator of X from its differential generator (see Sect. 5.7).
Process X is a strong Markov process for each initial value x [Øksendal 2007, Theorem
7.2.4]. We focus on the time-homogeneous case, where b and σ are time-independent,
because time could be added as an extra state variable.

5.2. Stochastic Hybrid Programs
As a system model for stochastic hybrid systems, we have introduced stochastic hy-
brid programs (SHPs) [Platzer 2011b]. SHPs combine stochastic differential equations
for describing the stochastic continuous system dynamics with program operations to
describe the discrete stochastic choices, discrete switching, and jumps. These primi-
tive dynamics can be combined programmatically in flexible ways. All basic terms in
stochastic hybrid programs and stochastic differential dynamic logic are polynomial
terms built over real-valued variables and rational constants. Extensions to rational
functions are possible.

Definition 5.2 (Stochastic hybrid program). Stochastic hybrid programs (SHPs) are
formed by the following grammar (where xi is a variable, x a vector of variables, θ a
basic term, b a vector of basic terms, σ a matrix of basic terms, χ is a quantifier-free
first-order real arithmetic formula, λ, ν ≥ 0 are rational numbers):

α, β ::= xi := θ | xi := ∗ | ?χ | dx = bdt+ σdW &χ | λα ⊕ νβ | α;β | α∗

Assignment xi := θ deterministically assigns term θ to variable xi instantaneously.
Random assignment xi := ∗ randomly updates variable xi, but unlike in classical dy-
namic logic [Pratt 1976] and differential dynamic logic, we assume a probability dis-
tribution for x. As one example for a probability distribution, we consider uniform
distribution in the interval [0,1], but other distributions can be used as long as they
are computationally tractable, e.g., definable in first-order real arithmetic.

Most importantly, dx = bdt+ σdW &χ represents a stochastic continuous evolution
along a stochastic differential equation, restricted to the evolution domain region χ,
i.e., the stochastic process will stop when it leaves χ. Unlike in dL and QdL, where
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we take a nondeterministic view, stochastic continuous evolutions do not stop prema-
turely, but exactly when they leave χ. The time when evolutions stop is still random,
but now described by the stochastic continuous evolution and its evolution domain
constraint instead of by nondeterminism. In particular, χ represents control decisions
when to interrupt the continuous stochastic process. Because of that, we can show that
the random variable describing when the stochastic continuous evolution stops is a
Markov time (Theorem 5.9). We assume that dx = bdt+ σdW satisfies the assumptions
of stochastic differential equations from Def. 5.1.

Test ?χ represents a stochastic process that fails (disappears into an absorbing state)
if χ is not satisfied yet continues unmodified otherwise. Linear combination λα ⊕ νβ
evolves like α with probability λ and like β otherwise. For conceptual simplicity, we as-
sume λ+ ν = 1, but other linear combinations are possible when taking care to ensure
that the result still gives probabilities [Kozen 1985], e.g., when using complementary
tests in the definition if(χ)α elseβ ≡ (?χ;α) ⊕ (?¬χ;β). It is possible to extend this to
the case where λ, µ are terms. Linear combination alias probabilistic choice λα ⊕ νβ
is the counterpart of the nondeterministic choice α ∪ β from Sect. 3, but gives infor-
mation about the probability with which the respective choices are taken. Sequential
composition α;β and repetition α∗ work similarly to differential dynamic logic, except
that they combine SHPs instead of non-stochastic HPs.

The semantics of a SHP is the stochastic process that it generates. The seman-
tics [[α]] of a SHP α consists of a function [[α]] : (Ω→ Rd)→ ([0,∞)× Ω→ Rd) that
maps any Rd-valued random variable Z describing the initial state to a stochastic
process [[α]]

Z together with a function (|α|) : (Ω→ Rd)→ (Ω→ R) that maps any Rd-
valued random variable Z describing the initial state to a (random) stopping time
(|α|)Z indicating when to stop [[α]]

Z . Often, an F0-measurable random variable Z or de-
terministic state is used to describe the initial state. We assume independence of Z
from subsequent stochastic processes like Brownian motions occurring in the defini-
tion of [[α]]

Z . For an Rd-valued random variable Z, we denote the stochastic process
Ẑ : {0} × Ω→ Rd; (0, ω) 7→ Ẑ0(ω) := Z(ω) that is stuck at Z by Ẑ. We write x̂ for the
random variable Z that is a deterministic state Z(ω) := x for all ω ∈ Ω. We write [[α]]

x

and (|α|)x for [[α]]
Z and (|α|)Z in that case.

In order to simplify notation, we assume that all variables are uniquely identified by
an index, i.e., the only occurring variables are x1, x2, . . . , xd. We write Z(ω) |= χ if state
Z(ω) satisfies first-order real arithmetic formula χ and Z(ω) 6|= χ otherwise. In the se-
mantics we use a family of random variables {Ui}i∈I that are distributed uniformly in
[0, 1] and independent of other Uj and of all other random variables and stochastic pro-
cesses in the semantics. Hence, U satisfies P ({ω ∈ Ω : U(ω) ≤ s}) =

∫ s
−∞ I[0,1]dt with

the usual extensions to other Borel subsets of R. To describe this situation, we just say
that “U ∼ U(0, 1) is i.i.d. (independent and identically distributed)”, meaning that U is
furthermore independent of all other random variables and stochastic processes in the
semantics. We denote the characteristic function of a set S by IS , defined by IS(x) := 1
if x ∈ S and IS(x) := 0 if x 6∈ S.

Definition 5.3 (Process semantics of SHPs). The semantics of SHP α is defined by

[[α]] :(Ω→ Rd)→ ([0,∞)× Ω→ Rd);Z 7→ [[α]]
Z

= ([[α]]
Z
t )t≥0

(|α|) :(Ω→ Rd)→ (Ω→ R ∪ {∞});Z 7→ (|α|)Z

These functions are inductively defined for random variable Z : (Ω→ Rd) by

(1) [[xi := θ]]
Z

= Ŷ where Y (ω)i = [[θ]]
Z(ω) and Yj = Zj for all j 6= i, and (|xi := θ|)Z = 0.
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(2) [[xi := ∗]]Z = Û where Uj = Zj for all j 6= i, and Ui ∼ U(0, 1) is i.i.d. and F0-
measurable. Further, (|xi := ∗|)Z = 0.

(3) [[?χ]]
Z

= Ẑ on the event {Z |= χ} and (|?χ|)Z = 0 (on all events ω ∈ Ω). Note that
[[?χ]]

Z is not defined on the event {Z 6|= χ}.
(4) [[dx = bdt+ σdW &χ]]

Z is the stochastic process X : [0,∞)× Ω→ Rd that solves the
(Itō) stochastic differential equation dXt = [[b]]

Xtdt+ [[σ]]
XtdBt with X0 = Z on the

event {Z |= χ}, where Bt is a fresh e-dimensional Brownian motion if σ has e
columns. We assume that Z is independent of the σ-algebra generated by (Bt)t≥0.
Further, (|dx = bdt+ σdW &χ|)Z = inf{t ≥ 0 : Xt 6∈ χ}. Note that X is not defined
on the event {Z 6|= χ}.

(5)
[[λα ⊕ νβ]]

Z
= IU≤λ[[α]]

Z
+ IU>λ[[β]]

Z
=

{
[[α]]

Z on the event {U ≤ λ}
[[β]]

Z on the event {U > λ}
(|λα ⊕ νβ|)Z = IU≤λ(|α|)Z + IU>λ(|β|)Z
where U ∼ U(0, 1) is i.i.d. and F0-measurable.

(6)
[[α;β]]

Z
t =

[[α]]
Z
t on the event {(|α|)Z > t}

[[β]]
[[α]]Z

(|α|)Z

t−(|α|)Z on the event {(|α|)Z ≤ t}

(|α;β|)Z = (|α|)Z + (|β|)[[α]]Z
(|α|)Z

(7)
[[α∗]]Zt = [[αn]]

Z
t on the event {(|αn|)Z > t}

(|α∗|)Z = lim
n→∞

(|αn|)Z

where α0 ≡?true, α1 ≡ α, and αn+1 ≡ α;αn.

For case 7, note that (|αn|)Z is monotone in n, hence the limit (|α∗|)Z exists and is finite
if the sequence is bounded. The limit is ∞ otherwise. Note that [[α∗]]Zt is independent
of the choice of n on the event {(|αn|)Z > t} (but not necessarily independent of n on the
event {(|αn|)Z ≥ t}, because α might start with a jump after αn). Observe that [[α∗]]Zt
is not defined on the event {∀n (|αn|)Z ≤ t}, which happens, e.g., for Zeno executions
violating divergence of time. It would still be possible to give a semantics in this case,
e.g., at t = (|αn|)Z , but we do not gain much from introducing those technicalities. Note
that the choice of inequalities in cases 6 and 7 is important to obtain a càdlàg process.

In the semantics of [[α]]
Z , time is allowed to end. We explicitly consider [[α]]

Z
t as not

defined for a realization ω if a part of this process is not defined, because of failed tests
in α. The process is explicitly not defined when (|α|)Z < t. Explicitly being not defined
can be viewed as being in a special absorbing state that can never be left again, as
in killed processes. The stochastic process [[α]]

Z is only intended to be used until time
(|α|)Z . We stop using [[α]]

Z after time (|α|)Z , which is a random variable.

Example 5.4 (Jumping rotational Brownian motion). Consider a simple example
illustrating how SHPs combine discrete and stochastic continuous dynamics to form
stochastic hybrid systems. Consider the following SHP:

?x2+y2≤1

3
; x :=

x

2
; dx =

−x
2
dt− ydW, dy =

−y
2
dt+ xdW &χ
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It starts with a test ?x2+y2≤ 1
3 checking whether the state variables x, y are in a ball of

radius
√

1
3 around 0. Only if it succeeds can the SHP continue. Then, the SHP performs

an instantaneous discrete jump reducing the value of x to x := x
2 . Finally, the SHP fol-

lows a stochastic differential equation for rotational Brownian motion restricted to
the evolution domain region χ that we define as χ ≡ x2 + y2 < 9. This gives rotational
dynamics from the diffusion terms (compare Example 3.20) and an exponentially con-
tracting drift.

5.3. SdL Formulas
Formulas of stochastic differential dynamic logic are built out of SdL function terms.

Definition 5.5 (SdL term). Function terms of stochastic differential dynamic logic
SdL are formed by the grammar (F is a primitive measurable function definable in
first-order real arithmetic, e.g., the characteristic function IS of a set S definable in
first-order real arithmetic, B is a boolean combination of such characteristic functions
using operators ∧,∨,¬,→ from Figure 18, λ, ν are rational numbers):

f, g ::= F | λf + νg | Bf | 〈α〉f

0 ≡ I∅
1 ≡ IRd
¬f ≡ 1− f

A ∧B ≡ AB
A ∨B ≡ A+B −AB
A→ B ≡ 1−A+AB

[α]f ≡ ¬〈α〉¬f

Fig. 18. Common SdL and
SHP abbreviations

One typical choice for a primitive measurable function F
is the characteristic function IS of a set S definable in first-
order real arithmetic, which is then measurable [Tarski
1951]. The SdL term λf + νg is a linear combination of
SdL terms. The SdL term Bf is a boolean product with a
boolean combination B of characteristic functions of mea-
surable sets. SdL term 〈α〉f represents the supremal value
of f along the process belonging to α. The syntactic abbrevi-
ations in Figure 18 can be useful, especially for convenient
operators on boolean combinations of characteristic func-
tions. Formulas of SdL are simple, because SdL function
terms are powerful. SdL formulas express equational and
inequality relations between SdL function terms f, g.

Definition 5.6 (SdL formula). The formulas of SdL are defined by the following
grammar (where f, g are SdL function terms):

φ ::= f ≤ g | f = g

The semantics of classical logics maps an interpretation to a truth-value. This does
not work for stochastic logic, because the state evolution of SHPs contained in SdL
formulas is stochastic, not deterministic. Instead, the semantics of an SdL function
term is a generator for a random variable.

Definition 5.7 (SdL semantics). The semantics [[f ]] of SdL function term f is a func-
tion [[f ]] : (Ω→ Rd)→ (Ω→ R) that maps any Rd-valued random variable Z describing
the current state to a random variable [[f ]]

Z . It is defined inductively by

(1) [[F ]]
Z

= F `(Z), i.e., [[F ]]
Z

(ω) = F `(Z(ω)) where F ` is the function denoted by func-
tion symbol F

(2) [[λf + νg]]
Z

= λ[[f ]]
Z

+ ν[[g]]
Z

(3) [[Bf ]]
Z

= [[B]]
Z · [[f ]]

Z , i.e., pathwise multiplication [[Bf ]]
Z

(ω) = [[B]]
Z

(ω) · [[f ]]
Z

(ω)

(4) [[〈α〉f ]]
Z

= sup{[[f ]]
[[α]]Zt : 0 ≤ t ≤ (|α|)Z}

When Z is not defined (results from a failed test), then [[f ]]
Z is not defined.
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If f is a characteristic function of a measurable set, then [[〈α〉f ]]
Z corresponds to

a random variable that reflects the supremal f value that α can reach at least once
during its evolution until stopping time (|α|)Z when starting in a state corresponding
to random variable Z. Then P ([[〈α〉f ]]

Z
= 1) is the probability with which α reaches f

at least once. Expected values of SdL terms are well-defined, e.g., E([[〈α〉(f + g)]]
Z

) is
an expected value, given Z. This includes the special case where Z is a deterministic
state Z(ω) := x for all ω ∈ Ω.

We say that SdL formula f ≤ g is valid, written � f ≤ g, if for all Rd-valued random
variables Z:

[[f ]]
Z ≤ [[g]]

Z
, i.e., ([[f ]]

Z
)(ω) ≤ ([[g]]

Z
)(ω) for all ω ∈ Ω

Validity of SdL formula f = g is defined accordingly, hence, � f = g iff � f ≤ g and
� g ≤ f . As consequence relation on SdL formulas, we use the (global) consequence
that we define as follows (similarly when some of the formulas are fi = gi):

f1 ≤ g1, . . . , fn ≤ gn � f ≤ g
iff � f1 ≤ g1, . . . ,� fn ≤ gn implies � f ≤ g

The (global) consequence f1 ≤ g1, . . . , fn ≤ gn � f ≤ g holds pathwise if it holds for each
ω ∈ Ω.

Example 5.8 (Jumping rotational Brownian motion). Let α denote the SHP from
Example 5.4. The SdL term 〈α〉x2+y2 represents the supremal value of the square,
x2+y2, of the Euclidean norm along the process α. The semantics [[〈α〉x2+y2]]

Z of this
SdL term starting from an initial random variable Z is a random variable. The SdL
formula 〈α〉x2+y2 ≥ 1 expresses that this supremal value is greater or equal 1. The
following states that this happens (SdL formula 〈α〉x2+y2 ≥ 1 holds) with probability
at most 1

3 :

P (〈α〉x2+y2≥1) ≤ 1

3
(19)

5.4. Measurability
The semantics of SHPs and SdL needs to satisfy measurability properties to make sure
that probabilities are well-defined and probabilistic questions become meaningful.

A Markov time (a.k.a. stopping time) is a non-negative random variable τ such that
{τ ≤ t} ∈ Ft for all t (i.e., it does not depend on the future). For a Markov time τ and a
stochastic process Xt, the following process that is stuck after time τ is called stopped
process Xτ

Xτ
t := Xtuτ =

{
Xt if t < τ

Xτ if t ≥ τ where t u τ := min{t, τ}

A class C of processes is stable under stopping if X ∈ C implies Xτ ∈ C for ev-
ery Markov time τ . Right continuous adapted processes, and processes satisfying the
strong Markov property are stable under stopping [Dynkin 1965, Theorem 10.2].

We have proved that the SHP semantics is well-defined. This includes that the natu-
ral stopping times (|α|)Z are Markov times so that it is meaningful to stop process [[α]]

Z

at (|α|)Z and so that useful properties of [[α]]
Z inherit to the stopped process [[α]]

Z
tu(|α|)Z .

Furthermore, we have shown that the process [[α]]
Z is adapted (does not look into the

future) and is a.s. càdlàg (right-continuous and has left limits), which is important to
define a semantics for SdL formulas.
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THEOREM 5.9 (ADAPTIVE CÀDLÀG PROCESS WITH MARKOV TIMES [PLATZER 2011B]).
For each SHP α and any Rd-valued random variable Z, [[α]]

Z is a.s. a càdlàg process
and adapted (to the completed filtration (Ft)t≥0 generated by Z and the constituent
Brownian motions (Bs)s≤t and uniform processes U ) and (|α|)Z is a Markov time (for
(Ft)t≥0). In particular, the end value [[α]]

Z
(|α|)Z is again measurable.

Note in particular, that the event {(|αn|)Z ≥ t} is Ft-measurable, thus, by [Karatzas
and Shreve 1991, Prop 1.2.3], the event {(|αn|)Z > t} in case 7 of the semantics of SHPs
is Ft-measurable. As a corollary to Theorem 5.9, [[α]]

Z is progressively measurable
[Karatzas and Shreve 1991, Prop 1.1.13], which implies that the stopped processes
are measurable.

We have proved that the SdL semantics is well-defined and that [[f ]]
Z is, indeed,

a random variable, i.e., measurable. Without this, probabilistic questions about the
value of SdL terms and formulas would not be well-defined, because they are not mea-
surable with respect to probability space (Ω,F , P ).

THEOREM 5.10 (MEASURABILITY [PLATZER 2011B]). For any Rd-valued random
variable Z, the semantics [[f ]]

Z of function term f is a random variable (i.e., F-
measurable).

In particular, for each Borel-measurable set S, the probability P ([[f ]]
Z ∈ S) is well-

defined so that probabilistic questions have a well-defined answer. Note that well-
definedness of case 4 of the semantics of SdL uses Theorem 5.9.

5.5. Axioms
Stochastic hybrid systems are a very expressive model and can even represent systems
with a very complicated behavior. Just like the systems they model, however, they
still expose their rich semantical complexity. In order to make this rich semantical
complexity and the deep theory behind the stochastic dynamics accessible in a form
that is amenable to a computational approach, we have introduced a proof calculus for
SdL [Platzer 2011b]. Just like the proof calculi for dL and QdL, the proof rules for SdL
are syntactic so that only the justification of their soundness requires the deep theory
of stochastic processes and stochastic hybrid systems, their use does not. This makes
it possible to computerize stochastic calculus in the form of syntactic SdL proofs.

We show axioms and proof rules that can be used to prove SdL formulas in Fig-
ure 19. First we present proof rules that are sound pathwise, i.e., satisfy the global
consequence relation pathwise for each ω ∈ Ω. Axiom 〈:=〉 corresponds to Hoare’s as-
signment rule for deterministic discrete assignment dynamics. Axiom 〈?〉 is the test
axiom from dynamic logic, just using the product notation of SdL instead of conjunc-
tions.

Axiom 〈;〉 is the SdL form of the sequential composition axiom. By t we denote the
binary maximum operator. Operator t coincides with ∨ for values in {0,1}, e.g., for SdL
terms built using operators ∧,∨,¬, 〈α〉 from characteristic functions. As a supremum,
〈α〉B only takes on values {0,1} if B does. Note that the two sides of 〈;〉 are generally
not equal, because α has to run to completion before β starts in 〈α;β〉f , but α can stop
early in 〈α〉(f t 〈β〉f) and β can then start already.

Axiom 〈〉λ and 〈〉+ represent scalar multiplication and (sub)linearity for scalars λ, ν.
The two sides of axiom 〈〉+ are not equal if the suprema 〈α〉f and 〈α〉g are at different
times. Axiom I expresses idempotence and range constraints on boolean combinations
(Figure 18) of characteristic functions.
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〈:=〉 〈x := θ〉f(x) = f(θ)

〈?〉 〈?χ〉f = χf

〈;〉 〈α;β〉f ≤ 〈α〉(f t 〈β〉f)

〈〉λ 〈α〉(λf) = λ〈α〉f

〈〉+ 〈α〉(λf + νg) ≤ λ〈α〉f + ν〈α〉g

I 0 ≤ B = BB ≤ 1 (B boolean from characteristic functions)

R f ≤ g � 〈α〉f ≤ 〈α〉g

DW χ→ f ≤ λ � 〈dx = bdt+ σdW &χ〉f ≤ λ (λ ∈ Q)

ind 〈α〉g ≤ g � 〈α∗〉g ≤ g

Fig. 19. Pathwise proof rules for SdL

Rule R is the generalization rule of regular modal logic C expressing monotonicity. It
is the counterpart of a corresponding regular generalization rule that is easily deriv-
able from K and G in dL. Rule DW is the weakening rule for differential equations,
yet generalized to stochastic differential equations. Note that formula χ→ f ≤ λ in
DW is equivalent to χf ≤ χλ but easier to read. If f is continuous, rule DW is sound
when replacing the topological closure χ (which is computable by quantifier elimina-
tion) by χ, because the inequality is a weak inequality. Rule ind is an induction rule. It
corresponds to rule ind of dL from p. 24.

Other rules are derivable from Figure 19:

(pos) 0 ≤ f � 0 ≤ 〈α〉f

(〈;〉2) 〈α;β〉f ≤ 〈α〉〈β〉f (� f ≤ 〈β〉f )

(〈;〉3) 〈α;β〉f ≤ 〈α〉(f + 〈β〉f) (0 ≤ f )

Rule pos expresses positivity (if f is positive then 〈α〉f is) and is derivable7 from 〈〉λ
and R. The simpler sequential composition principle 〈;〉2 is derivable8 from 〈;〉 and R.
Its assumption � f ≤ 〈β〉f holds in particular if β is continuous at 0 a.s.. A sufficient
condition for SHP β to be a.s. continuous at 0 is that, on all paths, the first atomic
operation that is not a test is a stochastic differential equation, not an assignment or
random assignment. Formula 〈;〉3 is derivable9 from 〈;〉, pos, and R. Consequently the
operator t can either be added into the language or approximated conservatively by +
as in 〈;〉3.

Not all reasoning for stochastic hybrid systems is sound pathwise. We have intro-
duced other SdL axioms and proof rules that do not hold pathwise, but are still sound
in distribution. Rule 〈⊕〉 relates probabilities of linear combinations (alias probabilistic
choices):

7 By R, 0 ≤ f � 〈α〉0 ≤ 〈α〉f . By 〈〉λ, 〈α〉0 = 〈α〉(0 ∗ 0) = 0〈α〉0 = 0.
8 By R, f ≤ 〈β〉f entails f t 〈β〉f = 〈β〉f , from which R derives 〈α〉(f t 〈β〉f) ≤ 〈α〉〈β〉f . Thus, 〈α;β〉f ≤
〈α〉〈β〉f by 〈;〉.
9 By pos, 0 ≤ f entails 0 ≤ 〈β〉f . Thus, R and the semantics of t, yield 〈α〉(f t 〈β〉f) ≤ 〈α〉(f + 〈β〉f) by
0 ≤ f , which derives 〈;〉3 together with 〈α;β〉f ≤ 〈α〉(f t 〈β〉f), which holds by 〈;〉.
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(〈⊕〉) P (〈λα⊕ νβ〉f ∈ S) = λP (〈α〉f ∈ S) + νP (〈β〉f ∈ S)

How to prove properties about a random assignment xi := ∗ depends on the distribu-
tion that we use for the random assignment. For a uniform distribution in [0,1], e.g.,
we obtain the following proof rule that is sound in distribution:

(〈∗〉) P (〈xi := ∗〉f ∈ S) =
∫ 1

0
I〈xi:=r〉f∈Sdr

The integrand is measurable for measurable S by Theorem 5.10. The rule is applicable
when f has been simplified enough using other proof rules such that the integral can
be computed after using 〈:=〉 to simplify the integrand.

The SdL rules and axioms generalize to probabilistic assumptions by the rule of
partition, i.e., using

P (C) = P (C|A)P (A) + P (C|¬A)P (¬A)

to consider the case where assumption A holds separately from the case where A
does not hold (giving less information about conclusion C, but the probability can by
bounded).

5.6. Soundness
The most critical result about the SdL axioms and proof rules is that they are sound, so
that their simple syntactic reasoning always gives correct results about the semanti-
cal behavior of stochastic hybrid systems. This result splits into SdL axioms and proof
rules that are sound pathwise (i.e., the global consequence relation between premises
and conclusion holds pathwise) and those that are sound in distribution (i.e., the indi-
cated probability relations hold). All proof rules that are sound pathwise are sound in
distribution but not vice versa.

THEOREM 5.11 (PATHWISE SOUNDNESS OF SdL [PLATZER 2011B]). The SdL ax-
ioms and proof rules in Figure 19 are globally sound pathwise.

THEOREM 5.12 (SOUNDNESS IN DISTRIBUTION OF SdL [PLATZER 2011B]). The
SdL proof rules 〈⊕〉 and 〈∗〉 are sound in distribution.

5.7. Stochastic Differential Invariants
Proving properties of differential equations is very challenging. Differential invariants
(Sect. 3.6) are the primary proof technique for more complicated differential equations
that have no computable solutions. Differential invariants are the “only” choice for dif-
ferential equations with disturbances [Platzer 2010a; Platzer 2010b], because those
do not have a single unique solution but depend on input functions. In that respect,
stochastic differential equations are like differential equations with disturbances, be-
cause both have noise terms in the right hand sides, which make solutions non-unique,
depending on input functions and noise. The difference is that stochastic differential
equations have a stochastic model of the noise, whereas classical differential equa-
tions with disturbances have a nondeterministic model. Solving stochastic differential
equations is, for the most part, limited to sampling, and even that is difficult [Øksendal
2007; Kloeden and Platen 2010].

For SdL, we lift the ideas behind differential invariants for differential equations to
stochastic differential invariants for stochastic differential equations [Platzer 2011b].
One critical element behind differential invariants is Lemma 3.19, which relates (com-
putable) syntactic derivatives to (semantic) analytic differentiation. The stochastic
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analogue of analytic differentiation are infinitesimal generators, the analogue of syn-
tactic derivatives are differential generators.

Definition 5.13 (Infinitesimal generator). The (infinitesimal) generator of an a.s.
right continuous strong Markov process (e.g., a solution from Def. 5.1) is the operator
A that maps a function f : Rd → R to the function Af : Rd → R defined as

Af(x) := lim
t↘0

Exf(Xt)− f(x)

t

We say that Af is defined if this limit exists for all x ∈ Rd. By Dynkin’s formula
[Dynkin 1965, p. 133], infinitesimal generators can be used to determine, without solv-
ing the stochastic differential equation, the expected value of a function when following
the process until a Markov time.

THEOREM 5.14 (DYNKIN’S FORMULA [ØKSENDAL 2007, THEOREM 7.4.1]). Let
Xt an a.s. right continuous strong Markov process (e.g., a solution from Def. 5.1). If
f ∈ C2(Rd,R) has compact support and τ is a Markov time with Exτ <∞, then

Exf(Xτ ) = f(x) + Ex
∫ τ

0

Af(Xs)ds

Dynkin’s formula is very useful, but only if we can compute the infinitesimal gener-
ator and its integral. The generator A is a stochastic expression in the sense that A is
defined in terms of a limit of an expectation of a stochastic process. It has been shown,
however, that, under fairly mild assumptions, it is equal to a deterministic expression
of x called the differential generator.

THEOREM 5.15 (DIFFERENTIAL GENERATOR [ØKSENDAL 2007, THEOREM 7.3.3]).
Consider a solution Xt of a stochastic differential equation from Def. 5.1. If

f ∈ C2(Rd,R) is compactly supported, then Af is defined and equal to the differ-
ential generator Lf of f:

Lf(x) :=
∑
i

bi(x)
∂f

∂xi
(x) +

1

2

∑
i,j

(σ(x)σ(x)T )i,j
∂2f

∂xi∂xj
(x)

Observe that this deterministic differential generator can be computed syntactically,
yet is still used for a stochastic process in Theorem 5.14. We turn this principle into a
fully syntactic proof rule for stochastic differential invariants.

THEOREM 5.16 (SOUNDNESS OF STOCHASTIC DIFFERENTIAL INVARIANTS). If
function f ∈ C2(Rd,R) has compact support on χ (which holds for all f ∈ C2(Rd,R) if χ
represents a bounded set), then the proof rule 〈′〉 is sound for λ > 0, p ≥ 0

(〈′〉) 〈α〉(χ→ f) ≤ λp χ→f ≥ 0 χ→Lf ≤ 0

P (〈α〉〈dx = bdt+ σdW &χ〉f ≥ λ) ≤ p

See [Platzer 2011b] for a proof of Theorem 5.16. The implications in the premises of
〈′〉 can be understood like that in DW. Let χ be given by first-order real arithmetic
formulas. If f is polynomial and, thus, f ∈ C2(Rd,R), then the second and third premise
of 〈′〉 are in first-order real arithmetic, hence decidable.

Example 5.17 (Jumping rotational Brownian motion).
With χ ≡ x2 + y2 < 9, the probabilistic statement about the SdL formula (19) from

Example 5.8 can be proved easily in the SdL calculus. The first step is to use 〈;〉2 as
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follows:

P
(〈

?x2+y2≤1

3
; x :=

x

2
; dx =

−x
2
dt− ydW, dy =

−y
2
dt+ xdW &χ

〉
x2+y2≥1

)
〈;〉2
≤ P

(〈
?x2+y2≤1

3
; x :=

x

2

〉〈
dx =

−x
2
dt− ydW, dy =

−y
2
dt+ xdW &χ

〉
x2+y2≥1

)
≤ 1

3

The last inequality (≤ 1
3 ) is by rule 〈′〉. The second premise of 〈′〉 is proved by

f ≡ x2 + y2 ≥ 0. The third premise is proved as follows. The stochastic differential
equation has the form

d

(
x
y

)
= bdt+ σdW =

(
−x2−y2

)
dt+

(
−y
x

)
dW

Thus, in order to determine Lf, we compute

σσT =

(
−y
x

)
(−y x) =

(
y2 −xy
−xy x2

)
and obtain by Theorem 5.15:

Lf =− x

2

∂f

∂x
− y

2

∂f

∂y
+

1

2

(
y2 ∂

2f

∂x2
− 2xy

∂2f

∂x∂y
+ x2 ∂

2f

∂y2

)
=− x

2
2x− y

2
2y +

1

2

(
2y2 − 0xy + 2x2

)
≤ 0

The first premise of 〈′〉 can be proved in the SdL calculus by the following chain of
inequalities, which are justified by SdL axioms and arithmetic as indicated:

〈?x2 + y2≤1

3
; x :=

x

2
〉(χ→ f)

〈;〉
≤ 〈?x2 + y2≤1

3
〉
(

(χ→ f) t 〈x :=
x

2
〉(χ→ f)

)
〈:=〉
= 〈?x2 + y2≤1

3
〉
(

(χ→ f) t (〈x :=
x

2
〉χ→

(x
2

)2

+ y2)
)

R
= 〈?x2 + y2≤1

3
〉(χ→ f)

〈?〉
=
(
x2 + y2≤1

3

)
(χ→ f)

R
=
(
x2 + y2≤1

3

)
(x2 + y2<9→ x2 + y2) ≤ 1

3

Together with χ→ f ≥ 0 and χ→ Lf ≤ 0, this inequality entails SdL formula (19) by
SdL proof rule 〈′〉 and 〈;〉2.

Observe that the dL and QdL calculus use equivalences and implications of dL and
QdL axioms together with proof rules to prove dL and QdL formulas. The SdL calculus
uses equations and inequalities of SdL axioms together with SdL proof rules to prove
SdL formulas. Some of this reasoning is in the scope of a probability operator (e.g.,
when using axiom 〈⊕〉), other inequalities and equations can be determined without a
probability operator.

6. RELATED WORK
Since dynamical systems, hybrid systems, and their extensions are very active areas
of research, a comprehensive overview of all results is impossible. In this survey, we
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focus on logic and proofs for dynamical systems. For more details on hybrid systems,
we refer to the literature [Henzinger 1996; Alur 2011]. For background on classical
logic and proving, we refer to the literature [Hughes and Cresswell 1996; Fitting 1996;
Harel et al. 2000].

Model checking and reachability analysis have been used successfully for hybrid
systems. They work by state space exploration and use various abstractions or approx-
imations [Henzinger 1996; Henzinger et al. 1992; Alur et al. 1995; Henzinger 1996;
Fränzle 1999; Anai and Weispfenning 2001; Clarke et al. 2003b; Tiwari 2003; Mysore
et al. 2005; Alur et al. 2006b; Alur et al. 2006a], including numerical approximations
[Chutinan and Krogh 2003; Asarin et al. 2003]. Lafferriere et al. [Lafferriere et al.
1999; Lafferriere et al. 2000; Lafferriere et al. 2001] have shown that finite-state bisim-
ulations, which generally do not exist for hybrid systems [Henzinger 1996], still work
for o-minimal hybrid automata and classes of linear dynamics with a homogeneous
eigenstructure, provided the discrete and continuous dynamics are completely decou-
pled. Surveys of model checking techniques for hybrid systems appeared elsewhere
[Henzinger 1996; Doyen et al. 2012].

Discretizations have been used for linear systems [Guernic and Girard 2009], to
obtain abstractions of fragments of hybrid systems [Alur et al. 2000; Alur et al. 2006b;
Tiwari 2008], and to approximate nonlinear systems by hybrid systems [Henzinger
et al. 1998] or by piecewise linear dynamics [Asarin et al. 2003]. Constraint-based
verification approaches [Prajna et al. 2007; Sankaranarayanan et al. 2008; Gulwani
and Tiwari 2008] have been considered, which are related to differential invariants.
Verification tools are based on logic and proofs [Platzer 2008a; Platzer and Quesel
2008; Platzer 2012b], polyhedral reachability analysis [Henzinger et al. 1997; Frehse
2008], reachability analysis with support functions [Guernic and Girard 2009; Frehse
et al. 2011], interval-constraint propagation [Ratschan and She 2007], and numerical
PDE solving [Mitchell and Templeton 2005].

Many languages have been proposed for modeling hybrid systems, including ex-
tended duration calculus [Zhou et al. 1992], hybrid automata [Henzinger 1996], hybrid
programs [Platzer 2007b; Platzer 2008a], guarded commands [Rönkkö et al. 2003], hy-
brid π-calculus [Rounds and Song 2003], and process algebra χ [van Beek et al. 2006].

Logic has been used successfully for real-time systems [Henzinger et al. 1992;
Dutertre 1995; Schobbens et al. 2002; Zhou and Hansen 2004; Olderog and Dierks
2008] and for timed-automata based model checking [Alur and Dill 1994; Alur 1999;
Comon and Jurski 1999; Larsen et al. 1997; Baier et al. 2008]. More details about
real-time systems can be found in books [Olderog and Dierks 2008; Baier et al. 2008].

The importance of understanding dynamic / reconfigurable distributed hybrid sys-
tems was recognized in modeling languages SHIFT [Deshpande et al. 1996] and R-
Charon [Kratz et al. 2006] for simulation and compilation [Deshpande et al. 1996] or
semantical considerations [Kratz et al. 2006]. For distributed hybrid systems, even giv-
ing a formal semantics is very challenging [Chaochen et al. 1995; Rounds 2004; Kratz
et al. 2006; van Beek et al. 2006]. Random simulation has been proposed for general
dynamical systems [Meseguer and Sharykin 2006].

Discrete programs with random number generators have been studied in the lit-
erature, including [Kozen 1981; Feldman and Harel 1984; Kozen 1985; McIver and
Morgan 2004]. Probabilities and logic have been considered in many contexts, e.g.,
[Richardson and Domingos 2006]. Discrete probabilistic systems and finite Markov
chains, have been studied using probabilistic model checking [Baier et al. 1997; Baier
et al. 2003; Courcoubetis and Yannakakis 1995] and statistical model checking [Sen
et al. 2005; Younes et al. 2006; Jha et al. 2009]. Extensions to probabilistic timed au-
tomata [Kwiatkowska et al. 2007] and probabilistic hybrid automata [Zuliani et al.
2010; Zhang et al. 2010] have been considered too.
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For an overview of model checking techniques for various classes of stochastic hy-
brid systems, we refer to a survey [Cassandras and Lygeros 2006]. Most verification
techniques for stochastic hybrid systems use discretizations, approximations, or as-
sume discrete time and bounded horizon [Koutsoukos and Riley 2008; Cassandras and
Lygeros 2006; Abate et al. 2008; Hu et al. 2000]. Barrier certificates have been ex-
tended to the stochastic case [Prajna et al. 2007].

The use of logic has been proposed for hybrid systems, e.g., in a propositional modal
µ-calculus [Davoren and Nerode 2000] or in early work based on phase transition sys-
tems [Maler et al. 1991]. See [Davoren and Nerode 2000] for an excellent overview.
We consider the first-order case, i.e., how to model and prove systems with concrete
differential equations like x′ = v, v′ = a and concrete control decisions like a :=−b, in-
stead of abstract propositional actions A,B,C of unknown effects that propositional
modal µ-calculi consider [Pratt 1981; Davoren and Nerode 2000]. The use of theorem
provers has been suggested in hybrid systems, including STeP [Manna and Sipma
1998; Kesten et al. 2000] and PVS [Ábrahám-Mumm et al. 2001]. Their working prin-
ciples are different from what we show here. They separate hybridness from the logic
and proof by compiling a given global system invariant for a hybrid automaton into a
single verification condition expressing that the invariant is preserved under all tran-
sitions of the hybrid automaton.

In our approach, we, instead, take logic and hybridness at face value by developing
and studying logics for hybrid systems, which directly integrate the logic and the hy-
brid dynamics (or extensions) within a single language. That makes it easier to identify
the core logical reasoning principles and transform formulas soundly in an entirely lo-
cal way even for more general properties than invariance checking. This view enables
the study of logically more foundational questions, including completeness, deductive
power, and relationships of differential invariants and differential cuts. Benefits for
automation of proofs and for computing invariants and differential invariants have
been discussed elsewhere [Platzer and Clarke 2009a; Platzer 2010b].

7. SUMMARY AND OUTLOOK
We have surveyed logics of dynamical systems, including hybrid systems, distributed
hybrid systems, and stochastic hybrid systems. The logic of discrete dynamical systems
and the logic of continuous dynamical systems are fragments of the logic of hybrid sys-
tems. We have surveyed differential dynamic logic (dL) for hybrid systems, quantified
differential dynamic logic (QdL) for distributed hybrid systems, and stochastic differ-
ential dynamic logic (SdL) for stochastic hybrid systems. We have recalled dynami-
cal system models, dynamic logics, their semantics, their axiomatizations, and proof
calculi for each of those dynamical systems. We have surveyed important theoretical
results, including soundness and completeness, and results about the relative deduc-
tive power of differential cuts and of differential auxiliaries. The differential dynamic
logics and their induction techniques for differential equations, which are captured
in various forms of differential invariants and differential variants, have been instru-
mental in proving properties for more advanced dynamical systems. While the use
of the theorem provers implementing differential dynamic logics is beyond the scope
of this article, we have given references to more information, including a number of
applications and case studies.

Not all important results about logics of dynamical systems and about differential
dynamic logics are included in this survey. We still hope to have given the reader a
good overview of logics for dynamical systems, and point out relationships and simi-
larities among the techniques. The reader should note that, for space reasons, not all
important members of the family of differential dynamic logics have been presented in
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this article. Prominent cases that are missing from this survey include differential-
algebraic dynamic logic (DAL) for hybrid systems with differential-algebraic con-
straints modeled in differential-algebraic program and the temporal extension of dif-
ferential temporal dynamic logic (dTL).

The results summarized in this article demonstrate that logic is a powerful tool,
not just for studying discrete phenomena, but also continuous phenomena, infinite-
dimensional phenomena, and stochastic phenomena. These logics set a strong logi-
cal foundation for dynamical systems, including logical foundations for cyber-physical
systems. Such stable foundations for the relatively young area of logic of dynamical
systems make it a very promising direction for future research, including theoretical,
practical, and applied research. Given the tremendous progress that logic for programs
has made since its conception, we expect to see no less from the area of logics for dy-
namical systems.
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ÁBRAHÁM-MUMM, E., STEFFEN, M., AND HANNEMANN, U. 2001. Verification of hybrid systems: Formal-

ization and proof rules in PVS. In ICECCS, S. F. Andler and J. Offutt, Eds. IEEE Computer Society, Los
Alamitos, 48–57.

ALUR, R. 1999. Timed automata. In CAV, N. Halbwachs and D. Peled, Eds. LNCS Series, vol. 1633. Springer,
8–22.

ALUR, R. 2011. Formal verification of hybrid systems. See Chakraborty et al. [2011], 273–278.
ALUR, R., COURCOUBETIS, C., HALBWACHS, N., HENZINGER, T. A., HO, P.-H., NICOLLIN, X., OLIVERO,

A., SIFAKIS, J., AND YOVINE, S. 1995. The algorithmic analysis of hybrid systems. Theor. Comput.
Sci. 138, 1, 3–34.

ALUR, R., COURCOUBETIS, C., HENZINGER, T. A., AND HO, P.-H. 1992. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. See Grossman et al. [1993], 209–229.

ALUR, R., DANG, T., AND IVANCIC, F. 2006a. Counterexample-guided predicate abstraction of hybrid sys-
tems. Theor. Comput. Sci. 354, 2, 250–271.

ALUR, R., DANG, T., AND IVANCIC, F. 2006b. Predicate abstraction for reachability analysis of hybrid sys-
tems. ACM Trans. Embedded Comput. Syst. 5, 1, 152–199.

ALUR, R. AND DILL, D. L. 1994. A theory of timed automata. Theor. Comput. Sci. 126, 2, 183–235.
ALUR, R., HENZINGER, T., LAFFERRIERE, G., AND PAPPAS, G. J. 2000. Discrete abstractions of hybrid

systems. Proc. IEEE 88, 7, 971–984.
ALUR, R., HENZINGER, T. A., AND HO, P.-H. 1996. Automatic symbolic verification of embedded systems.

IEEE T. Software Eng. 22, 3, 181–201.
ALUR, R., HENZINGER, T. A., AND SONTAG, E. D., Eds. 1996. Hybrid Systems III: Verification and Con-

trol, Proceedings of the DIMACS/SYCON Workshop, October 22-25, 1995, Rutgers University, New
Brunswick, NJ, USA. LNCS Series, vol. 1066. Springer.

ANAI, H. AND WEISPFENNING, V. 2001. Reach set computations using real quantifier elimination. In HSCC,
M. D. D. Benedetto and A. L. Sangiovanni-Vincentelli, Eds. LNCS Series, vol. 2034. Springer, 63–76.

APT, K. R., DE BOER, F. S., AND OLDEROG, E.-R. 2010. Verification of Sequential and Concurrent Programs
3rd Ed. Springer.
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