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Motivation

KeYmaera X provides strong evidence that Cyber-Physical Systems
are safe. But you need to provide the model and sometimes help
the proof.

André’s Lectures:

I Differential Dynamic Logics
– Syntax and Semantics

I Sound and relatively
complete axiomatizations

I Some examples

This Lecture:

I Practical advice for
modeling systems

I Hands-on Exercise proving
theorems

I Example-driven
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Outline

Straight Line Dynamics
The Stop Sign Model

Circular Dynamics
Loitering Outside Prohibited Airspace

Logarithmic Dynamics
Safe SCUBA Diving

Extras
The ODE Solver
Taylor Approximations as Successive Differential Cuts
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The Stop Sign Model
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Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Outline

Straight Line Dynamics
The Stop Sign Model

Circular Dynamics
Loitering Outside Prohibited Airspace

Logarithmic Dynamics
Safe SCUBA Diving

Extras
The ODE Solver
Taylor Approximations as Successive Differential Cuts

6



Loitering Outside Prohibited Airspace
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Loitering Outside Prohibited Airspace

y ≤ h→ [r := ∗; ?r ≤ h ∧ x2 + y2 = r2︸ ︷︷ ︸
Choose circle below h

; x ′ = y , y ′ = −x︸ ︷︷ ︸
Circular dynamics

]y ≤ h
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Lie Derivative Computations

(y ≤ h)′ ≡ (y)′ ≤ (h)′ ≡ −x ≤ 0 FALSE

(x2+y2 = r2)′ ≡ (x2+y2)′ = (r2)′ ≡ 2xx ′+2yy ′ = 0 ≡ 2xy−2xy = 0

r ≤ h ∧ x2 + y2 = r2 →? y ≤ h

FALSE

COUNTER-EXAMPLE: − 2 ≤ −2 ∧ 3 + 1 = 4 6→ −1 ≤ −2
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On Annoying Assumptions
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Take-aways from Loitering Example

I Like loop invariants, differential invariants sometimes need
strengthening.

I In these cases, try using differential cuts to describe
geometric constraints on the system.

I Most early proof attempts fail due to missing obvious
assumptions:

I Upper/lower-bounds (esp. positivity).
I Missing t ′ = 1 in time-triggered systems.
I Missing control epsilon t ≤ T in evolution domain.
I Interesting dynamics (e.g., missing v ≥ 0).

Use counter-examples to find these errors.
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Safe SCUBA diving
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Heart Rate Function

x ′ = −(x − HRmax)b
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SCUBA Ascent Case

Control Goal: Find a condition that ensures the diver reaches
the surface before running out of oxygen.
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SCUBA Proof Idea

x ′ = −(x − a)b, t ′ = −τx , d ′ = v , c ′ = C & c ≤ C ∧ d ≥ 0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

I Non-linear term: x≤HRmax

I Bound time: d0 + vc≥0⇒ bound on time (denote as
z = −d

v0
).

t = t0 − τxc ≥ t0 − τHRmaxc ≥ t0 − τHRmaxz ≥ 0︸ ︷︷ ︸
Initial safe states!

The first step requires x ≤ HRmax . This is the only interesting
lemma.
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Computing the Differential Ghost
Let’s prove x < HRmax instead to avoid extra case splitting due to
the x = HRmax bifurcation point.

I Step 1: Find an existential condition equivalent to our goal:

|=RCF x < HRmax ↔ ∃y .

?y2(x − HRmax) = −1

I Step 2: Find y ′ s.t. (y2(x − HRmax) = −1)′ is true:

(y2(x − HRmax) = −1)′ ≡ (y2(x − HRmax))′ = 0

≡ 2yy ′(x − HRmax) + y2x ′ = 0

≡ 2yy ′(x − HRmax + y2(−(x − a)b) = 0

≡ . . .

≡ y ′ =
b

2
y

(All equivalences are with respect to the ODE.)
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Take-aways from SCUBA Example

I As systems become harder to model, parametric models
save the day.

I Identifying and using differential ghosts is (sometimes)
systematic.

I Partial solutions to fragments of an ODE’s dynamics are
useful whenever you can upper-bound terms.

I Tactics ⇒ proof reuse
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Summary
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Resources

Notes, slides, and examples from this talk:

https://nfulton.org/marktoberdorf

KeYmaera X website:

https://keymaeraX.org

Online Instance (With Mathematica!):

https://web.keymaeraX.org

Source Code (Scala):

https://github.com/LS-Lab/KeYmaeraX-release

KeYmaera X Credits: Stefan Mitsch, Jan-David Quesel, Marcus
Völp, Brandon Bohrer, Yong Kiam Tan, André Platzer, . . .
SCUBA Credits: Karim Elmaaroufi and Viren Bajaj
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The ODE Solver
To solve x ′ = v , v ′ = a:

I Add a time variable:

[x ′ = v , v ′ = a, t ′ = 1]P(x , v)

I Use differential cuts to add solutions in linear order:

[x ′ = v , v ′ = a, t ′ = 1&v = at+v0∧x =
at2

2
+v0t+x0]P(x , v)

I Rewrite the post-condition in terms of t:

[x ′ = v , v ′ = a, t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Inverse differential ghosts to remove all equations except time:

[t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Use univariate solve:

∀s∀0 ≤ t ≤ s.v = at + v0 ∧ x =
at2

2
+ v0t + x0 → P(t)
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Taylor Approximations in KeYmaera X

s ′ = c , c ′ = −s

, x ′ = 1

s = sin x = x − x3

3!
+

x5

5!
− . . .

c = cos x = 1− x2

2!
+

x4

4!
− . . .
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