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Motivation

KeYmaera X provides strong evidence that Cyber-Physical Systems
are safe. But you need to provide the model and sometimes help
the proof.

André’s Lectures: This Lecture:
» Differential Dynamic Logics » Practical advice for
— Syntax and Semantics modeling systems
» Sound and relatively » Hands-on Exercise proving
complete axiomatizations theorems

» Some examples » Example-driven
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Take-Aways from the Stop Sign Model

Focus on interesting questions by unfolding.

Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

KeYmaera X's edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

» Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

» ModelPlex: Vxg,x1,-..,X,.3%0,-..,Xn- is kinda hard to
check at runtime...
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Loitering Outside Prohibited Airspace
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(x*4y? = r?) = (x*+y?) = (r*) = 2x'+2yy’ =0 =2xy—2xy =0

r<hanx®+y’=r>=7y<h

:
! Prohibited
| Airspace

X
xA2+yA2=rA2 T y



Lie Derivative Computations

(y<h))=(y) <(h)=-x<0 FALSE

(x*4y? = r?) = (x*+y?) = (r*) = 2x'+2yy’ =0 =2xy—2xy =0
r<hAx®+y?>=r*>="y<h FALSE

COUNTER-EXAMPLE: —2< -2A3+41=4/4-1<-2

:
! Prohibited
| Airspace

1

X
xA2+yA2=rA2 T y



On Annoying Assumptions

HOME EXTREME U}

The ESA has figured out what killed the
Schiaparelli Mars lander

By Jessica Hall on November 30, 2016 at 2.00 pm 38 Comments

The Schiaparelli lander model

When the navigation system got wind of the IMU’s wacky output, it decided that meant

the spacecraft had “an estimated altitude that was negative” — that is, below ground

level. Inits scramble, the system released the backshell too early, fired the braking

thrusters, and finally flicked on the on-ground systems as if Schiaparelli had already ]_0
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Take-aways from Loitering Example

> Like loop invariants, differential invariants sometimes need
strengthening.

> In these cases, try using differential cuts to describe
geometric constraints on the system.

» Most early proof attempts fail due to missing obvious
assumptions:

v

Upper/lower-bounds (esp. positivity).

Missing t’ = 1 in time-triggered systems.

Missing control epsilon t < T in evolution domain.
Interesting dynamics (e.g., missing v > 0).

vV vy

Use counter-examples to find these errors.

11
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Safe SCUBA diving

d = Distance to Surface B
d=v,Vv =acc

X = Heart Rate
t = Tank
a = Target HR

b, = Constants

x’=-(x-a)b, t'=-Tx

13



Heart Rate Function

x' = —(x — HRmax)b

14



SCUBA Ascent Case

Heart Rate and Tank Volume

Differential Program:

x’ = =-(x-a)b,
t' = -1x,

d’" = v,

c’ 1

Distance (d)

-

Control Goal: Find a condition that ensures the diver reaches
the surface before running out of oxygen.

15



SCUBA Proof Idea

X' =—(x—a)b,t' =—1x,d'=v,/=C & c<CAd>0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.
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Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

» Non-linear term: x<HRp,ax

» Bound time: dy + vc >0 = bound on time (denote as

z:_v—g]).
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SCUBA Proof Idea

X' =—(x—a)b,t' =—1x,d'=v,/=C & c<CAd>0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

» Non-linear term: x<HRp,ax

» Bound time: dy + vc >0 = bound on time (denote as

z:_v—:).

t=1ty— 7xc > tg — THRaxC to — THRmaxz > 0

Initial safe states!

The first step requires x < HRpmax. This is the only interesting
lemma.

16



Computing the Differential Ghost

Let's prove x < HRp,ax instead to avoid extra case splitting due to
the x = HR,ax bifurcation point.
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Let's prove x < HRp,ax instead to avoid extra case splitting due to
the x = HR,ax bifurcation point.

» Step 1: Find an existential condition equivalent to our goal:

':RC]: X < HRpax < Hy?
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Computing the Differential Ghost

Let's prove x < HRp,ax instead to avoid extra case splitting due to
the x = HR,ax bifurcation point.

» Step 1: Find an existential condition equivalent to our goal:

Ercr X < HRmax <+ 3y. y?(x — HRmax) = —1

» Step 2: Find y’ s.t. (y2(x — HRmax) = —1) is true:

(y?(x — HRmax) = —1) = (y*(x — HRmax)) =0
= 2yy'(x — HRmax) + y*x' =0

_b
y'=5y

(All equivalences are with respect to the ODE.)

2yy'(x — HRmax + y2(—(x —a)b) =

0

17



Take-aways from SCUBA Example

As systems become harder to model, parametric models
save the day.

Identifying and using differential ghosts is (sometimes)
systematic.

Partial solutions to fragments of an ODE’s dynamics are
useful whenever you can upper-bound terms.

Tactics = proof reuse

18



Summary

ZIE

__Prohibited.
~ Airspace

d = Distance to Surface
d' =v,Vv =acc
x=HeartRate
t = Tank ‘
a =Target HR
b,T = Constants

x'=-(x-a)b, t'=-1x

10



Resources

Notes, slides, and examples from this talk:
https://nfulton.org/marktoberdorf
KeYmaera X website:
https://keymaeraX.org
Online Instance (With Mathematica!):
https://web.keymaeraX.org
Source Code (Scala):
https://github.com/LS-Lab/KeYmaeraX-release

KeYmaera X Credits: Stefan Mitsch, Jan-David Quesel, Marcus
Volp, Brandon Bohrer, Yong Kiam Tan, André Platzer, ...
SCUBA Credits: Karim Elmaaroufi and Viren Bajaj

20
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The ODE Solver
To solve X' = v,v/ = a:
» Add a time variable:

[xX' =v,v =a,t' =1]P(x,v)
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The ODE Solver
To solve X' = v,v/ = a:
» Add a time variable:

[xX' =v,v =a,t' =1]P(x,v)

» Use differential cuts to add solutions in linear order:
at?
[X =v,v =at =1&v =at+wAx = 7+v0t+x0]P(x, v)

» Rewrite the post-condition in terms of t:

2

t
[X/: V7V,:a’t/:]_&V:at+V0/\X:%+V0t+XO]P(t)
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The ODE Solver
To solve X' = v,v/ = a:
» Add a time variable:
[xX' =v,v =a,t' =1]P(x,v)
Use differential cuts to add solutions in linear order:

£2
[xX' = v,V =a,t' = 1&v = at+wAx = %—i—vot—i—xo]P(x, v)

v

v

Rewrite the post-condition in terms of t:

t2
[X/: V7V,:a’t/:]_&V:at+V0/\X:%+V0t+XO]P(t)

Inverse differential ghosts to remove all equations except time:

2
[t/:l&v:at—l—vo/\x:%+Vof+X0]P(t)

v

» Use univariate solve:
at?
VsV0<t<sv=at+wAx= - twttx— P(t)

29



Taylor Approximations in KeYmaera X

s=c¢c =-s
' x3+x5
s=sinx=x——+——...
31 5l
. x2+x4
c=cosx=1——+—— ...
21 4]
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Taylor Approximations in KeYmaera X

ss=cd=-5x=1

' x3+x5
S=SiNX=X—=—+—— ...

3! 5!

, x2+x4
c=cosx=1—"—-4+" — ..

2! 41

23



	Straight Line Dynamics
	The Stop Sign Model

	Circular Dynamics
	Loitering Outside Prohibited Airspace

	Logarithmic Dynamics
	Safe SCUBA Diving

	Extras
	The ODE Solver
	Taylor Approximations as Successive Differential Cuts


