
KeYmaera X
A Tutorial on Interactive Verification for Hybrid Systems

Nathan Fulton
Marktoberdorf 2017

August 11, 2017

Examples: https://nfulton.org/marktoberdorf.zip
Slides: https://nfulton.org/slides/marktoberdorf.pdf 1



Motivation

KeYmaera X provides strong evidence that Cyber-Physical Systems
are safe. But you need to provide the model and sometimes help
the proof.

André’s Lectures:

I Differential Dynamic Logics
– Syntax and Semantics

I Sound and relatively
complete axiomatizations

I Some examples

This Lecture:

I Practical advice for
modeling systems

I Hands-on Exercise proving
theorems

I Example-driven

2



Motivation

KeYmaera X provides strong evidence that Cyber-Physical Systems
are safe. But you need to provide the model and sometimes help
the proof.

André’s Lectures:

I Differential Dynamic Logics
– Syntax and Semantics

I Sound and relatively
complete axiomatizations

I Some examples

This Lecture:

I Practical advice for
modeling systems

I Hands-on Exercise proving
theorems

I Example-driven

2



Motivation

KeYmaera X provides strong evidence that Cyber-Physical Systems
are safe. But you need to provide the model and sometimes help
the proof.

André’s Lectures:

I Differential Dynamic Logics
– Syntax and Semantics

I Sound and relatively
complete axiomatizations

I Some examples

This Lecture:

I Practical advice for
modeling systems

I Hands-on Exercise proving
theorems

I Example-driven

2



Outline

Straight Line Dynamics
The Stop Sign Model

Circular Dynamics
Loitering Outside Prohibited Airspace

Logarithmic Dynamics
Safe SCUBA Diving

Extras
The ODE Solver
Taylor Approximations as Successive Differential Cuts

3



The Stop Sign Model

4



Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Take-Aways from the Stop Sign Model

I Focus on interesting questions by unfolding.

I Use contextual reasoning to avoid repetition of expensive or
difficult proof steps.

I KeYmaera X’s edit tool checks your arithmetic (common and
annoying source of errors, both in proofs and
implementations!)

I Quantifier Elimination is a powerful tool useful for more than
just decision procedures:

I Find assumptions and loop invariants by reducing the
system to arithmetic and eliminating quantifiers.

I ModelPlex: ∀x0, x1, . . . , xn.∃y0, . . . , xn.ϕ is kinda hard to
check at runtime...

5



Outline

Straight Line Dynamics
The Stop Sign Model

Circular Dynamics
Loitering Outside Prohibited Airspace

Logarithmic Dynamics
Safe SCUBA Diving

Extras
The ODE Solver
Taylor Approximations as Successive Differential Cuts

6



Loitering Outside Prohibited Airspace

7



Loitering Outside Prohibited Airspace

y ≤ h→ [r := ∗; ?r ≤ h ∧ x2 + y2 = r2︸ ︷︷ ︸
Choose circle below h

; x ′ = y , y ′ = −x︸ ︷︷ ︸
Circular dynamics

]y ≤ h

8



Lie Derivative Computations

(y ≤ h)′ ≡ (y)′ ≤ (h)′ ≡ −x ≤ 0 FALSE

(x2+y2 = r2)′ ≡ (x2+y2)′ = (r2)′ ≡ 2xx ′+2yy ′ = 0 ≡ 2xy−2xy = 0

r ≤ h ∧ x2 + y2 = r2 →? y ≤ h

FALSE

COUNTER-EXAMPLE: − 2 ≤ −2 ∧ 3 + 1 = 4 6→ −1 ≤ −2

9



Lie Derivative Computations

(y ≤ h)′ ≡ (y)′ ≤ (h)′ ≡ −x ≤ 0 FALSE

(x2+y2 = r2)′ ≡ (x2+y2)′ = (r2)′ ≡ 2xx ′+2yy ′ = 0 ≡ 2xy−2xy = 0

r ≤ h ∧ x2 + y2 = r2 →? y ≤ h

FALSE

COUNTER-EXAMPLE: − 2 ≤ −2 ∧ 3 + 1 = 4 6→ −1 ≤ −2

9



Lie Derivative Computations

(y ≤ h)′ ≡ (y)′ ≤ (h)′ ≡ −x ≤ 0 FALSE

(x2+y2 = r2)′ ≡ (x2+y2)′ = (r2)′ ≡ 2xx ′+2yy ′ = 0 ≡ 2xy−2xy = 0

r ≤ h ∧ x2 + y2 = r2 →? y ≤ h

FALSE

COUNTER-EXAMPLE: − 2 ≤ −2 ∧ 3 + 1 = 4 6→ −1 ≤ −2

9



Lie Derivative Computations

(y ≤ h)′ ≡ (y)′ ≤ (h)′ ≡ −x ≤ 0 FALSE

(x2+y2 = r2)′ ≡ (x2+y2)′ = (r2)′ ≡ 2xx ′+2yy ′ = 0 ≡ 2xy−2xy = 0

r ≤ h ∧ x2 + y2 = r2 →? y ≤ h FALSE

COUNTER-EXAMPLE: − 2 ≤ −2 ∧ 3 + 1 = 4 6→ −1 ≤ −2

9



On Annoying Assumptions

10



Take-aways from Loitering Example

I Like loop invariants, differential invariants sometimes need
strengthening.

I In these cases, try using differential cuts to describe
geometric constraints on the system.

I Most early proof attempts fail due to missing obvious
assumptions:

I Upper/lower-bounds (esp. positivity).
I Missing t ′ = 1 in time-triggered systems.
I Missing control epsilon t ≤ T in evolution domain.
I Interesting dynamics (e.g., missing v ≥ 0).

Use counter-examples to find these errors.

11



Take-aways from Loitering Example

I Like loop invariants, differential invariants sometimes need
strengthening.

I In these cases, try using differential cuts to describe
geometric constraints on the system.

I Most early proof attempts fail due to missing obvious
assumptions:

I Upper/lower-bounds (esp. positivity).
I Missing t ′ = 1 in time-triggered systems.
I Missing control epsilon t ≤ T in evolution domain.
I Interesting dynamics (e.g., missing v ≥ 0).

Use counter-examples to find these errors.

11



Take-aways from Loitering Example

I Like loop invariants, differential invariants sometimes need
strengthening.

I In these cases, try using differential cuts to describe
geometric constraints on the system.

I Most early proof attempts fail due to missing obvious
assumptions:

I Upper/lower-bounds (esp. positivity).
I Missing t ′ = 1 in time-triggered systems.
I Missing control epsilon t ≤ T in evolution domain.
I Interesting dynamics (e.g., missing v ≥ 0).

Use counter-examples to find these errors.

11



Outline

Straight Line Dynamics
The Stop Sign Model

Circular Dynamics
Loitering Outside Prohibited Airspace

Logarithmic Dynamics
Safe SCUBA Diving

Extras
The ODE Solver
Taylor Approximations as Successive Differential Cuts

12



Safe SCUBA diving

13



Heart Rate Function

x ′ = −(x − HRmax)b

14



SCUBA Ascent Case

Control Goal: Find a condition that ensures the diver reaches
the surface before running out of oxygen.

15



SCUBA Proof Idea

x ′ = −(x − a)b, t ′ = −τx , d ′ = v , c ′ = C & c ≤ C ∧ d ≥ 0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

I Non-linear term: x≤HRmax

I Bound time: d0 + vc≥0⇒ bound on time (denote as
z = −d

v0
).

t = t0 − τxc ≥ t0 − τHRmaxc ≥ t0 − τHRmaxz ≥ 0︸ ︷︷ ︸
Initial safe states!

The first step requires x ≤ HRmax . This is the only interesting
lemma.

16



SCUBA Proof Idea

x ′ = −(x − a)b, t ′ = −τx , d ′ = v , c ′ = C & c ≤ C ∧ d ≥ 0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

I Non-linear term: x≤HRmax

I Bound time: d0 + vc≥0⇒ bound on time (denote as
z = −d

v0
).

t = t0 − τxc ≥ t0 − τHRmaxc ≥ t0 − τHRmaxz ≥ 0︸ ︷︷ ︸
Initial safe states!

The first step requires x ≤ HRmax . This is the only interesting
lemma.

16



SCUBA Proof Idea

x ′ = −(x − a)b, t ′ = −τx , d ′ = v , c ′ = C & c ≤ C ∧ d ≥ 0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

I Non-linear term: x≤HRmax

I Bound time: d0 + vc≥0⇒ bound on time (denote as
z = −d

v0
).

t = t0 − τxc ≥ t0 − τHRmaxc ≥ t0 − τHRmaxz ≥ 0︸ ︷︷ ︸
Initial safe states!

The first step requires x ≤ HRmax . This is the only interesting
lemma.

16



SCUBA Proof Idea

x ′ = −(x − a)b, t ′ = −τx , d ′ = v , c ′ = C & c ≤ C ∧ d ≥ 0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

I Non-linear term: x≤HRmax

I Bound time: d0 + vc≥0⇒ bound on time (denote as
z = −d

v0
).

t = t0 − τxc ≥ t0 − τHRmaxc ≥ t0 − τHRmaxz ≥ 0︸ ︷︷ ︸
Initial safe states!

The first step requires x ≤ HRmax . This is the only interesting
lemma.

16



SCUBA Proof Idea

x ′ = −(x − a)b, t ′ = −τx , d ′ = v , c ′ = C & c ≤ C ∧ d ≥ 0

Idea: Bound time and all non-linear terms, then prove linear
inequalities on these bounds by integrating.

I Non-linear term: x≤HRmax

I Bound time: d0 + vc≥0⇒ bound on time (denote as
z = −d

v0
).

t = t0 − τxc ≥ t0 − τHRmaxc ≥ t0 − τHRmaxz ≥ 0︸ ︷︷ ︸
Initial safe states!

The first step requires x ≤ HRmax . This is the only interesting
lemma.

16



Computing the Differential Ghost
Let’s prove x < HRmax instead to avoid extra case splitting due to
the x = HRmax bifurcation point.

I Step 1: Find an existential condition equivalent to our goal:

|=RCF x < HRmax ↔ ∃y .

?y2(x − HRmax) = −1

I Step 2: Find y ′ s.t. (y2(x − HRmax) = −1)′ is true:

(y2(x − HRmax) = −1)′ ≡ (y2(x − HRmax))′ = 0

≡ 2yy ′(x − HRmax) + y2x ′ = 0

≡ 2yy ′(x − HRmax + y2(−(x − a)b) = 0

≡ . . .

≡ y ′ =
b

2
y

(All equivalences are with respect to the ODE.)

17



Computing the Differential Ghost
Let’s prove x < HRmax instead to avoid extra case splitting due to
the x = HRmax bifurcation point.

I Step 1: Find an existential condition equivalent to our goal:

|=RCF x < HRmax ↔ ∃y .?

y2(x − HRmax) = −1

I Step 2: Find y ′ s.t. (y2(x − HRmax) = −1)′ is true:

(y2(x − HRmax) = −1)′ ≡ (y2(x − HRmax))′ = 0

≡ 2yy ′(x − HRmax) + y2x ′ = 0

≡ 2yy ′(x − HRmax + y2(−(x − a)b) = 0

≡ . . .

≡ y ′ =
b

2
y

(All equivalences are with respect to the ODE.)

17



Computing the Differential Ghost
Let’s prove x < HRmax instead to avoid extra case splitting due to
the x = HRmax bifurcation point.

I Step 1: Find an existential condition equivalent to our goal:

|=RCF x < HRmax ↔ ∃y .

?

y2(x − HRmax) = −1

I Step 2: Find y ′ s.t. (y2(x − HRmax) = −1)′ is true:

(y2(x − HRmax) = −1)′ ≡ (y2(x − HRmax))′ = 0

≡ 2yy ′(x − HRmax) + y2x ′ = 0

≡ 2yy ′(x − HRmax + y2(−(x − a)b) = 0

≡ . . .

≡ y ′ =
b

2
y

(All equivalences are with respect to the ODE.)

17



Computing the Differential Ghost
Let’s prove x < HRmax instead to avoid extra case splitting due to
the x = HRmax bifurcation point.

I Step 1: Find an existential condition equivalent to our goal:

|=RCF x < HRmax ↔ ∃y .

?

y2(x − HRmax) = −1

I Step 2: Find y ′ s.t. (y2(x − HRmax) = −1)′ is true:

(y2(x − HRmax) = −1)′ ≡ (y2(x − HRmax))′ = 0

≡ 2yy ′(x − HRmax) + y2x ′ = 0

≡ 2yy ′(x − HRmax + y2(−(x − a)b) = 0

≡ . . .

≡ y ′ =
b

2
y

(All equivalences are with respect to the ODE.)

17



Computing the Differential Ghost
Let’s prove x < HRmax instead to avoid extra case splitting due to
the x = HRmax bifurcation point.

I Step 1: Find an existential condition equivalent to our goal:

|=RCF x < HRmax ↔ ∃y .

?

y2(x − HRmax) = −1

I Step 2: Find y ′ s.t. (y2(x − HRmax) = −1)′ is true:

(y2(x − HRmax) = −1)′ ≡ (y2(x − HRmax))′ = 0

≡ 2yy ′(x − HRmax) + y2x ′ = 0

≡ 2yy ′(x − HRmax + y2(−(x − a)b) = 0

≡ . . .

≡ y ′ =
b

2
y

(All equivalences are with respect to the ODE.)

17



Take-aways from SCUBA Example

I As systems become harder to model, parametric models
save the day.

I Identifying and using differential ghosts is (sometimes)
systematic.

I Partial solutions to fragments of an ODE’s dynamics are
useful whenever you can upper-bound terms.

I Tactics ⇒ proof reuse

18



Summary

19



Resources

Notes, slides, and examples from this talk:

https://nfulton.org/marktoberdorf

KeYmaera X website:

https://keymaeraX.org

Online Instance (With Mathematica!):

https://web.keymaeraX.org

Source Code (Scala):

https://github.com/LS-Lab/KeYmaeraX-release

KeYmaera X Credits: Stefan Mitsch, Jan-David Quesel, Marcus
Völp, Brandon Bohrer, Yong Kiam Tan, André Platzer, . . .
SCUBA Credits: Karim Elmaaroufi and Viren Bajaj

20

https://nfulton.org/marktoberdorf
https://keymaeraX.org
https://web.keymaeraX.org
https://github.com/LS-Lab/KeYmaeraX-release


Outline

Straight Line Dynamics
The Stop Sign Model

Circular Dynamics
Loitering Outside Prohibited Airspace

Logarithmic Dynamics
Safe SCUBA Diving

Extras
The ODE Solver
Taylor Approximations as Successive Differential Cuts

21



The ODE Solver
To solve x ′ = v , v ′ = a:

I Add a time variable:

[x ′ = v , v ′ = a, t ′ = 1]P(x , v)

I Use differential cuts to add solutions in linear order:

[x ′ = v , v ′ = a, t ′ = 1&v = at+v0∧x =
at2

2
+v0t+x0]P(x , v)

I Rewrite the post-condition in terms of t:

[x ′ = v , v ′ = a, t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Inverse differential ghosts to remove all equations except time:

[t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Use univariate solve:

∀s∀0 ≤ t ≤ s.v = at + v0 ∧ x =
at2

2
+ v0t + x0 → P(t)

22



The ODE Solver
To solve x ′ = v , v ′ = a:

I Add a time variable:

[x ′ = v , v ′ = a, t ′ = 1]P(x , v)

I Use differential cuts to add solutions in linear order:

[x ′ = v , v ′ = a, t ′ = 1&v = at+v0∧x =
at2

2
+v0t+x0]P(x , v)

I Rewrite the post-condition in terms of t:

[x ′ = v , v ′ = a, t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Inverse differential ghosts to remove all equations except time:

[t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Use univariate solve:

∀s∀0 ≤ t ≤ s.v = at + v0 ∧ x =
at2

2
+ v0t + x0 → P(t)

22



The ODE Solver
To solve x ′ = v , v ′ = a:

I Add a time variable:

[x ′ = v , v ′ = a, t ′ = 1]P(x , v)

I Use differential cuts to add solutions in linear order:

[x ′ = v , v ′ = a, t ′ = 1&v = at+v0∧x =
at2

2
+v0t+x0]P(x , v)

I Rewrite the post-condition in terms of t:

[x ′ = v , v ′ = a, t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Inverse differential ghosts to remove all equations except time:

[t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Use univariate solve:

∀s∀0 ≤ t ≤ s.v = at + v0 ∧ x =
at2

2
+ v0t + x0 → P(t)

22



The ODE Solver
To solve x ′ = v , v ′ = a:

I Add a time variable:

[x ′ = v , v ′ = a, t ′ = 1]P(x , v)

I Use differential cuts to add solutions in linear order:

[x ′ = v , v ′ = a, t ′ = 1&v = at+v0∧x =
at2

2
+v0t+x0]P(x , v)

I Rewrite the post-condition in terms of t:

[x ′ = v , v ′ = a, t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Inverse differential ghosts to remove all equations except time:

[t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Use univariate solve:

∀s∀0 ≤ t ≤ s.v = at + v0 ∧ x =
at2

2
+ v0t + x0 → P(t)

22



The ODE Solver
To solve x ′ = v , v ′ = a:

I Add a time variable:

[x ′ = v , v ′ = a, t ′ = 1]P(x , v)

I Use differential cuts to add solutions in linear order:

[x ′ = v , v ′ = a, t ′ = 1&v = at+v0∧x =
at2

2
+v0t+x0]P(x , v)

I Rewrite the post-condition in terms of t:

[x ′ = v , v ′ = a, t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Inverse differential ghosts to remove all equations except time:

[t ′ = 1&v = at + v0 ∧ x =
at2

2
+ v0t + x0]P(t)

I Use univariate solve:

∀s∀0 ≤ t ≤ s.v = at + v0 ∧ x =
at2

2
+ v0t + x0 → P(t)

22



Taylor Approximations in KeYmaera X

s ′ = c , c ′ = −s

, x ′ = 1

s = sin x = x − x3

3!
+

x5

5!
− . . .

c = cos x = 1− x2

2!
+

x4

4!
− . . .

23



Taylor Approximations in KeYmaera X

s ′ = c , c ′ = −s, x ′ = 1

s = sin x = x − x3

3!
+

x5

5!
− . . .

c = cos x = 1− x2

2!
+

x4

4!
− . . .

23


	Straight Line Dynamics
	The Stop Sign Model

	Circular Dynamics
	Loitering Outside Prohibited Airspace

	Logarithmic Dynamics
	Safe SCUBA Diving

	Extras
	The ODE Solver
	Taylor Approximations as Successive Differential Cuts


